Metamath Proof Explorer


Theorem sibff

Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b โŠขB=BaseW
sitgval.j โŠขJ=TopOpenโกW
sitgval.s โŠขS=๐›”โกJ
sitgval.0 โŠข0ห™=0W
sitgval.x โŠขยทห™=โ‹…W
sitgval.h โŠขH=โ„HomโกScalarโกW
sitgval.1 โŠขฯ†โ†’WโˆˆV
sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
Assertion sibff โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถโ‹ƒJ

Proof

Step Hyp Ref Expression
1 sitgval.b โŠขB=BaseW
2 sitgval.j โŠขJ=TopOpenโกW
3 sitgval.s โŠขS=๐›”โกJ
4 sitgval.0 โŠข0ห™=0W
5 sitgval.x โŠขยทห™=โ‹…W
6 sitgval.h โŠขH=โ„HomโกScalarโกW
7 sitgval.1 โŠขฯ†โ†’WโˆˆV
8 sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
9 sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
10 dmmeas โŠขMโˆˆโ‹ƒranโกmeasuresโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
11 8 10 syl โŠขฯ†โ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
12 fvexd โŠขฯ†โ†’TopOpenโกWโˆˆV
13 2 12 eqeltrid โŠขฯ†โ†’JโˆˆV
14 13 sgsiga โŠขฯ†โ†’๐›”โกJโˆˆโ‹ƒranโกsigAlgebra
15 3 14 eqeltrid โŠขฯ†โ†’Sโˆˆโ‹ƒranโกsigAlgebra
16 1 2 3 4 5 6 7 8 9 sibfmbl โŠขฯ†โ†’FโˆˆdomโกMMblFnฮผS
17 11 15 16 mbfmf โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถโ‹ƒS
18 3 unieqi โŠขโ‹ƒS=โ‹ƒ๐›”โกJ
19 unisg โŠขJโˆˆVโ†’โ‹ƒ๐›”โกJ=โ‹ƒJ
20 13 19 syl โŠขฯ†โ†’โ‹ƒ๐›”โกJ=โ‹ƒJ
21 18 20 eqtrid โŠขฯ†โ†’โ‹ƒS=โ‹ƒJ
22 21 feq3d โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถโ‹ƒSโ†”F:โ‹ƒdomโกMโŸถโ‹ƒJ
23 17 22 mpbid โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถโ‹ƒJ