Metamath Proof Explorer


Theorem sinord

Description: Sine is increasing over the closed interval from -u (pi / 2 ) to ( pi / 2 ) . (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion sinord Aπ2π2Bπ2π2A<BsinA<sinB

Proof

Step Hyp Ref Expression
1 neghalfpire π2
2 halfpire π2
3 iccssre π2π2π2π2
4 1 2 3 mp2an π2π2
5 4 sseli Aπ2π2A
6 4 sseli Bπ2π2B
7 ltsub2 ABπ2A<Bπ2B<π2A
8 2 7 mp3an3 ABA<Bπ2B<π2A
9 5 6 8 syl2an Aπ2π2Bπ2π2A<Bπ2B<π2A
10 oveq2 x=Bπ2x=π2B
11 10 eleq1d x=Bπ2x0ππ2B0π
12 4 sseli xπ2π2x
13 resubcl π2xπ2x
14 2 12 13 sylancr xπ2π2π2x
15 1 2 elicc2i xπ2π2xπ2xxπ2
16 15 simp3bi xπ2π2xπ2
17 subge0 π2x0π2xxπ2
18 2 12 17 sylancr xπ2π20π2xxπ2
19 16 18 mpbird xπ2π20π2x
20 15 simp2bi xπ2π2π2x
21 lesub2 π2xπ2π2xπ2xπ2π2
22 1 2 21 mp3an13 xπ2xπ2xπ2π2
23 12 22 syl xπ2π2π2xπ2xπ2π2
24 20 23 mpbid xπ2π2π2xπ2π2
25 2 recni π2
26 25 25 subnegi π2π2=π2+π2
27 pidiv2halves π2+π2=π
28 26 27 eqtri π2π2=π
29 24 28 breqtrdi xπ2π2π2xπ
30 0re 0
31 pire π
32 30 31 elicc2i π2x0ππ2x0π2xπ2xπ
33 14 19 29 32 syl3anbrc xπ2π2π2x0π
34 11 33 vtoclga Bπ2π2π2B0π
35 oveq2 x=Aπ2x=π2A
36 35 eleq1d x=Aπ2x0ππ2A0π
37 36 33 vtoclga Aπ2π2π2A0π
38 cosord π2B0ππ2A0ππ2B<π2Acosπ2A<cosπ2B
39 34 37 38 syl2anr Aπ2π2Bπ2π2π2B<π2Acosπ2A<cosπ2B
40 5 recnd Aπ2π2A
41 coshalfpim Acosπ2A=sinA
42 40 41 syl Aπ2π2cosπ2A=sinA
43 6 recnd Bπ2π2B
44 coshalfpim Bcosπ2B=sinB
45 43 44 syl Bπ2π2cosπ2B=sinB
46 42 45 breqan12d Aπ2π2Bπ2π2cosπ2A<cosπ2BsinA<sinB
47 9 39 46 3bitrd Aπ2π2Bπ2π2A<BsinA<sinB