Metamath Proof Explorer


Theorem slmdvs0

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvs0.f F=ScalarW
slmdvs0.s ·˙=W
slmdvs0.k K=BaseF
slmdvs0.z 0˙=0W
Assertion slmdvs0 WSLModXKX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 slmdvs0.f F=ScalarW
2 slmdvs0.s ·˙=W
3 slmdvs0.k K=BaseF
4 slmdvs0.z 0˙=0W
5 1 slmdsrg WSLModFSRing
6 eqid F=F
7 eqid 0F=0F
8 3 6 7 srgrz FSRingXKXF0F=0F
9 5 8 sylan WSLModXKXF0F=0F
10 9 oveq1d WSLModXKXF0F·˙0˙=0F·˙0˙
11 simpl WSLModXKWSLMod
12 simpr WSLModXKXK
13 5 adantr WSLModXKFSRing
14 3 7 srg0cl FSRing0FK
15 13 14 syl WSLModXK0FK
16 eqid BaseW=BaseW
17 16 4 slmd0vcl WSLMod0˙BaseW
18 17 adantr WSLModXK0˙BaseW
19 16 1 2 3 6 slmdvsass WSLModXK0FK0˙BaseWXF0F·˙0˙=X·˙0F·˙0˙
20 11 12 15 18 19 syl13anc WSLModXKXF0F·˙0˙=X·˙0F·˙0˙
21 16 1 2 7 4 slmd0vs WSLMod0˙BaseW0F·˙0˙=0˙
22 18 21 syldan WSLModXK0F·˙0˙=0˙
23 22 oveq2d WSLModXKX·˙0F·˙0˙=X·˙0˙
24 20 23 eqtrd WSLModXKXF0F·˙0˙=X·˙0˙
25 10 24 22 3eqtr3d WSLModXKX·˙0˙=0˙