Metamath Proof Explorer


Theorem sn-isghm

Description: Longer proof of isghm , unsuccessfully attempting to simplify isghm using elovmpo according to an editorial note (now removed). (Contributed by SN, 7-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sn-isghm.w X = Base S
sn-isghm.x Y = Base T
sn-isghm.a + ˙ = + S
sn-isghm.b ˙ = + T
Assertion sn-isghm F S GrpHom T S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v

Proof

Step Hyp Ref Expression
1 sn-isghm.w X = Base S
2 sn-isghm.x Y = Base T
3 sn-isghm.a + ˙ = + S
4 sn-isghm.b ˙ = + T
5 df-ghm GrpHom = s Grp , t Grp f | [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v
6 fvex Base s V
7 feq2 w = Base s f : w Base t f : Base s Base t
8 raleq w = Base s v w f u + s v = f u + t f v v Base s f u + s v = f u + t f v
9 8 raleqbi1dv w = Base s u w v w f u + s v = f u + t f v u Base s v Base s f u + s v = f u + t f v
10 7 9 anbi12d w = Base s f : w Base t u w v w f u + s v = f u + t f v f : Base s Base t u Base s v Base s f u + s v = f u + t f v
11 6 10 sbcie [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v f : Base s Base t u Base s v Base s f u + s v = f u + t f v
12 11 abbii f | [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v = f | f : Base s Base t u Base s v Base s f u + s v = f u + t f v
13 fvex Base t V
14 fsetex Base t V f | f : Base s Base t V
15 13 14 ax-mp f | f : Base s Base t V
16 abanssl f | f : Base s Base t u Base s v Base s f u + s v = f u + t f v f | f : Base s Base t
17 15 16 ssexi f | f : Base s Base t u Base s v Base s f u + s v = f u + t f v V
18 12 17 eqeltri f | [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v V
19 fveq2 s = S Base s = Base S
20 19 1 eqtr4di s = S Base s = X
21 20 adantr s = S t = T Base s = X
22 fveq2 t = T Base t = Base T
23 22 2 eqtr4di t = T Base t = Y
24 23 adantl s = S t = T Base t = Y
25 21 24 feq23d s = S t = T f : Base s Base t f : X Y
26 fveq2 s = S + s = + S
27 26 3 eqtr4di s = S + s = + ˙
28 27 oveqd s = S u + s v = u + ˙ v
29 28 fveq2d s = S f u + s v = f u + ˙ v
30 fveq2 t = T + t = + T
31 30 4 eqtr4di t = T + t = ˙
32 31 oveqd t = T f u + t f v = f u ˙ f v
33 29 32 eqeqan12d s = S t = T f u + s v = f u + t f v f u + ˙ v = f u ˙ f v
34 21 33 raleqbidv s = S t = T v Base s f u + s v = f u + t f v v X f u + ˙ v = f u ˙ f v
35 21 34 raleqbidv s = S t = T u Base s v Base s f u + s v = f u + t f v u X v X f u + ˙ v = f u ˙ f v
36 25 35 anbi12d s = S t = T f : Base s Base t u Base s v Base s f u + s v = f u + t f v f : X Y u X v X f u + ˙ v = f u ˙ f v
37 36 abbidv s = S t = T f | f : Base s Base t u Base s v Base s f u + s v = f u + t f v = f | f : X Y u X v X f u + ˙ v = f u ˙ f v
38 12 37 eqtrid s = S t = T f | [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v = f | f : X Y u X v X f u + ˙ v = f u ˙ f v
39 5 18 38 elovmpo F S GrpHom T S Grp T Grp F f | f : X Y u X v X f u + ˙ v = f u ˙ f v
40 1 fvexi X V
41 2 fvexi Y V
42 fex2 F : X Y X V Y V F V
43 40 41 42 mp3an23 F : X Y F V
44 43 adantr F : X Y u X v X F u + ˙ v = F u ˙ F v F V
45 feq1 f = F f : X Y F : X Y
46 fveq1 f = F f u + ˙ v = F u + ˙ v
47 fveq1 f = F f u = F u
48 fveq1 f = F f v = F v
49 47 48 oveq12d f = F f u ˙ f v = F u ˙ F v
50 46 49 eqeq12d f = F f u + ˙ v = f u ˙ f v F u + ˙ v = F u ˙ F v
51 50 2ralbidv f = F u X v X f u + ˙ v = f u ˙ f v u X v X F u + ˙ v = F u ˙ F v
52 45 51 anbi12d f = F f : X Y u X v X f u + ˙ v = f u ˙ f v F : X Y u X v X F u + ˙ v = F u ˙ F v
53 44 52 elab3 F f | f : X Y u X v X f u + ˙ v = f u ˙ f v F : X Y u X v X F u + ˙ v = F u ˙ F v
54 53 3anbi3i S Grp T Grp F f | f : X Y u X v X f u + ˙ v = f u ˙ f v S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v
55 df-3an S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v
56 39 54 55 3bitri F S GrpHom T S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v