Metamath Proof Explorer


Theorem spansncol

Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansncol ABB0spanBA=spanA

Proof

Step Hyp Ref Expression
1 mulcl yByB
2 1 ancoms ByyB
3 2 adantll AByyB
4 ax-hvmulass yBAyBA=yBA
5 4 3com13 AByyBA=yBA
6 5 3expa AByyBA=yBA
7 6 eqeq2d AByx=yBAx=yBA
8 7 biimprd AByx=yBAx=yBA
9 oveq1 z=yBzA=yBA
10 9 rspceeqv yBx=yBAzx=zA
11 3 8 10 syl6an AByx=yBAzx=zA
12 11 rexlimdva AByx=yBAzx=zA
13 12 3adant3 ABB0yx=yBAzx=zA
14 divcl zBB0zB
15 14 3expb zBB0zB
16 15 adantlr zABB0zB
17 simprl zABB0B
18 simplr zABB0A
19 ax-hvmulass zBBAzBBA=zBBA
20 16 17 18 19 syl3anc zABB0zBBA=zBBA
21 divcan1 zBB0zBB=z
22 21 3expb zBB0zBB=z
23 22 adantlr zABB0zBB=z
24 23 oveq1d zABB0zBBA=zA
25 20 24 eqtr3d zABB0zBBA=zA
26 25 eqeq2d zABB0x=zBBAx=zA
27 26 biimprd zABB0x=zAx=zBBA
28 oveq1 y=zByBA=zBBA
29 28 rspceeqv zBx=zBBAyx=yBA
30 16 27 29 syl6an zABB0x=zAyx=yBA
31 30 exp43 zABB0x=zAyx=yBA
32 31 com4l ABB0zx=zAyx=yBA
33 32 3imp ABB0zx=zAyx=yBA
34 33 rexlimdv ABB0zx=zAyx=yBA
35 13 34 impbid ABB0yx=yBAzx=zA
36 hvmulcl BABA
37 36 ancoms ABBA
38 elspansn BAxspanBAyx=yBA
39 37 38 syl ABxspanBAyx=yBA
40 39 3adant3 ABB0xspanBAyx=yBA
41 elspansn AxspanAzx=zA
42 41 3ad2ant1 ABB0xspanAzx=zA
43 35 40 42 3bitr4d ABB0xspanBAxspanA
44 43 eqrdv ABB0spanBA=spanA