Metamath Proof Explorer


Theorem splfv1

Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)

Ref Expression
Hypotheses spllen.s φSWordA
spllen.f φF0T
spllen.t φT0S
spllen.r φRWordA
splfv1.x φX0..^F
Assertion splfv1 φSspliceFTRX=SX

Proof

Step Hyp Ref Expression
1 spllen.s φSWordA
2 spllen.f φF0T
3 spllen.t φT0S
4 spllen.r φRWordA
5 splfv1.x φX0..^F
6 splval SWordAF0TT0SRWordASspliceFTR=SprefixF++R++SsubstrTS
7 1 2 3 4 6 syl13anc φSspliceFTR=SprefixF++R++SsubstrTS
8 7 fveq1d φSspliceFTRX=SprefixF++R++SsubstrTSX
9 pfxcl SWordASprefixFWordA
10 1 9 syl φSprefixFWordA
11 ccatcl SprefixFWordARWordASprefixF++RWordA
12 10 4 11 syl2anc φSprefixF++RWordA
13 swrdcl SWordASsubstrTSWordA
14 1 13 syl φSsubstrTSWordA
15 2 elfzelzd φF
16 15 uzidd φFF
17 lencl RWordAR0
18 4 17 syl φR0
19 uzaddcl FFR0F+RF
20 16 18 19 syl2anc φF+RF
21 fzoss2 F+RF0..^F0..^F+R
22 20 21 syl φ0..^F0..^F+R
23 22 5 sseldd φX0..^F+R
24 ccatlen SprefixFWordARWordASprefixF++R=SprefixF+R
25 10 4 24 syl2anc φSprefixF++R=SprefixF+R
26 fzass4 F0STFSF0TT0S
27 26 biimpri F0TT0SF0STFS
28 27 simpld F0TT0SF0S
29 2 3 28 syl2anc φF0S
30 pfxlen SWordAF0SSprefixF=F
31 1 29 30 syl2anc φSprefixF=F
32 31 oveq1d φSprefixF+R=F+R
33 25 32 eqtrd φSprefixF++R=F+R
34 33 oveq2d φ0..^SprefixF++R=0..^F+R
35 23 34 eleqtrrd φX0..^SprefixF++R
36 ccatval1 SprefixF++RWordASsubstrTSWordAX0..^SprefixF++RSprefixF++R++SsubstrTSX=SprefixF++RX
37 12 14 35 36 syl3anc φSprefixF++R++SsubstrTSX=SprefixF++RX
38 31 oveq2d φ0..^SprefixF=0..^F
39 5 38 eleqtrrd φX0..^SprefixF
40 ccatval1 SprefixFWordARWordAX0..^SprefixFSprefixF++RX=SprefixFX
41 10 4 39 40 syl3anc φSprefixF++RX=SprefixFX
42 pfxfv SWordAF0SX0..^FSprefixFX=SX
43 1 29 5 42 syl3anc φSprefixFX=SX
44 41 43 eqtrd φSprefixF++RX=SX
45 8 37 44 3eqtrd φSspliceFTRX=SX