Metamath Proof Explorer


Theorem sseqfv1

Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φSV
sseqval.2 φMWordS
sseqval.3 W=WordS.-1M
sseqval.4 φF:WS
sseqfv1.4 φN0..^M
Assertion sseqfv1 φMseqstrFN=MN

Proof

Step Hyp Ref Expression
1 sseqval.1 φSV
2 sseqval.2 φMWordS
3 sseqval.3 W=WordS.-1M
4 sseqval.4 φF:WS
5 sseqfv1.4 φN0..^M
6 1 2 3 4 sseqval φMseqstrF=MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩
7 6 fveq1d φMseqstrFN=MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N
8 wrdfn MWordSMFn0..^M
9 2 8 syl φMFn0..^M
10 fvex xx1V
11 df-lsw lastS=xVxx1
12 10 11 fnmpti lastSFnV
13 12 a1i φlastSFnV
14 lencl MWordSM0
15 2 14 syl φM0
16 15 nn0zd φM
17 seqfn MseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
18 16 17 syl φseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
19 ssv ranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩V
20 19 a1i φranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩V
21 fnco lastSFnVseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnMranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩VlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
22 13 18 20 21 syl3anc φlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
23 fzouzdisj 0..^MM=
24 23 a1i φ0..^MM=
25 fvun1 MFn0..^MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM0..^MM=N0..^MMlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N=MN
26 9 22 24 5 25 syl112anc φMlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N=MN
27 7 26 eqtrd φMseqstrFN=MN