| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subglsm.h |
|
| 2 |
|
subglsm.s |
|
| 3 |
|
subglsm.a |
|
| 4 |
|
simp11 |
|
| 5 |
|
eqid |
|
| 6 |
1 5
|
ressplusg |
|
| 7 |
4 6
|
syl |
|
| 8 |
7
|
oveqd |
|
| 9 |
8
|
mpoeq3dva |
|
| 10 |
9
|
rneqd |
|
| 11 |
|
subgrcl |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
|
simp2 |
|
| 14 |
|
eqid |
|
| 15 |
14
|
subgss |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
13 16
|
sstrd |
|
| 18 |
|
simp3 |
|
| 19 |
18 16
|
sstrd |
|
| 20 |
14 5 2
|
lsmvalx |
|
| 21 |
12 17 19 20
|
syl3anc |
|
| 22 |
1
|
subggrp |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
1
|
subgbas |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
13 25
|
sseqtrd |
|
| 27 |
18 25
|
sseqtrd |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
28 29 3
|
lsmvalx |
|
| 31 |
23 26 27 30
|
syl3anc |
|
| 32 |
10 21 31
|
3eqtr4d |
|