Metamath Proof Explorer


Theorem subgpgp

Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Assertion subgpgp PpGrpGSSubGrpGPpGrpG𝑠S

Proof

Step Hyp Ref Expression
1 pgpprm PpGrpGP
2 1 adantr PpGrpGSSubGrpGP
3 eqid G𝑠S=G𝑠S
4 3 subggrp SSubGrpGG𝑠SGrp
5 4 adantl PpGrpGSSubGrpGG𝑠SGrp
6 eqid BaseG=BaseG
7 eqid odG=odG
8 6 7 ispgp PpGrpGPGGrpxBaseGn0odGx=Pn
9 8 simp3bi PpGrpGxBaseGn0odGx=Pn
10 9 adantr PpGrpGSSubGrpGxBaseGn0odGx=Pn
11 6 subgss SSubGrpGSBaseG
12 11 adantl PpGrpGSSubGrpGSBaseG
13 ssralv SBaseGxBaseGn0odGx=PnxSn0odGx=Pn
14 12 13 syl PpGrpGSSubGrpGxBaseGn0odGx=PnxSn0odGx=Pn
15 eqid odG𝑠S=odG𝑠S
16 3 7 15 subgod SSubGrpGxSodGx=odG𝑠Sx
17 16 adantll PpGrpGSSubGrpGxSodGx=odG𝑠Sx
18 17 eqeq1d PpGrpGSSubGrpGxSodGx=PnodG𝑠Sx=Pn
19 18 rexbidv PpGrpGSSubGrpGxSn0odGx=Pnn0odG𝑠Sx=Pn
20 19 ralbidva PpGrpGSSubGrpGxSn0odGx=PnxSn0odG𝑠Sx=Pn
21 14 20 sylibd PpGrpGSSubGrpGxBaseGn0odGx=PnxSn0odG𝑠Sx=Pn
22 10 21 mpd PpGrpGSSubGrpGxSn0odG𝑠Sx=Pn
23 3 subgbas SSubGrpGS=BaseG𝑠S
24 23 adantl PpGrpGSSubGrpGS=BaseG𝑠S
25 24 raleqdv PpGrpGSSubGrpGxSn0odG𝑠Sx=PnxBaseG𝑠Sn0odG𝑠Sx=Pn
26 22 25 mpbid PpGrpGSSubGrpGxBaseG𝑠Sn0odG𝑠Sx=Pn
27 eqid BaseG𝑠S=BaseG𝑠S
28 27 15 ispgp PpGrpG𝑠SPG𝑠SGrpxBaseG𝑠Sn0odG𝑠Sx=Pn
29 2 5 26 28 syl3anbrc PpGrpGSSubGrpGPpGrpG𝑠S