Metamath Proof Explorer


Theorem subgslw

Description: A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypothesis subgslw.1 H = G 𝑠 S
Assertion subgslw S SubGrp G K P pSyl G K S K P pSyl H

Proof

Step Hyp Ref Expression
1 subgslw.1 H = G 𝑠 S
2 slwprm K P pSyl G P
3 2 3ad2ant2 S SubGrp G K P pSyl G K S P
4 slwsubg K P pSyl G K SubGrp G
5 4 3ad2ant2 S SubGrp G K P pSyl G K S K SubGrp G
6 simp3 S SubGrp G K P pSyl G K S K S
7 1 subsubg S SubGrp G K SubGrp H K SubGrp G K S
8 7 3ad2ant1 S SubGrp G K P pSyl G K S K SubGrp H K SubGrp G K S
9 5 6 8 mpbir2and S SubGrp G K P pSyl G K S K SubGrp H
10 1 oveq1i H 𝑠 x = G 𝑠 S 𝑠 x
11 simpl1 S SubGrp G K P pSyl G K S x SubGrp H S SubGrp G
12 1 subsubg S SubGrp G x SubGrp H x SubGrp G x S
13 12 3ad2ant1 S SubGrp G K P pSyl G K S x SubGrp H x SubGrp G x S
14 13 simplbda S SubGrp G K P pSyl G K S x SubGrp H x S
15 ressabs S SubGrp G x S G 𝑠 S 𝑠 x = G 𝑠 x
16 11 14 15 syl2anc S SubGrp G K P pSyl G K S x SubGrp H G 𝑠 S 𝑠 x = G 𝑠 x
17 10 16 syl5eq S SubGrp G K P pSyl G K S x SubGrp H H 𝑠 x = G 𝑠 x
18 17 breq2d S SubGrp G K P pSyl G K S x SubGrp H P pGrp H 𝑠 x P pGrp G 𝑠 x
19 18 anbi2d S SubGrp G K P pSyl G K S x SubGrp H K x P pGrp H 𝑠 x K x P pGrp G 𝑠 x
20 simpl2 S SubGrp G K P pSyl G K S x SubGrp H K P pSyl G
21 13 simprbda S SubGrp G K P pSyl G K S x SubGrp H x SubGrp G
22 eqid G 𝑠 x = G 𝑠 x
23 22 slwispgp K P pSyl G x SubGrp G K x P pGrp G 𝑠 x K = x
24 20 21 23 syl2anc S SubGrp G K P pSyl G K S x SubGrp H K x P pGrp G 𝑠 x K = x
25 19 24 bitrd S SubGrp G K P pSyl G K S x SubGrp H K x P pGrp H 𝑠 x K = x
26 25 ralrimiva S SubGrp G K P pSyl G K S x SubGrp H K x P pGrp H 𝑠 x K = x
27 isslw K P pSyl H P K SubGrp H x SubGrp H K x P pGrp H 𝑠 x K = x
28 3 9 26 27 syl3anbrc S SubGrp G K P pSyl G K S K P pSyl H