Step |
Hyp |
Ref |
Expression |
1 |
|
submateq.a |
|
2 |
|
submateq.b |
|
3 |
|
submateq.n |
|
4 |
|
submateq.i |
|
5 |
|
submateq.j |
|
6 |
|
submatminr1.r |
|
7 |
|
submatminr1.m |
|
8 |
|
submatminr1.e |
|
9 |
|
eqid |
|
10 |
1 2 9
|
minmar1marrep |
|
11 |
6 7 10
|
syl2anc |
|
12 |
11
|
oveqd |
|
13 |
8 12
|
eqtrid |
|
14 |
|
eqid |
|
15 |
14 9
|
ringidcl |
|
16 |
6 15
|
syl |
|
17 |
1 2
|
marrepcl |
|
18 |
6 7 16 4 5 17
|
syl32anc |
|
19 |
13 18
|
eqeltrd |
|
20 |
13
|
3ad2ant1 |
|
21 |
20
|
oveqd |
|
22 |
7
|
3ad2ant1 |
|
23 |
16
|
3ad2ant1 |
|
24 |
4
|
3ad2ant1 |
|
25 |
5
|
3ad2ant1 |
|
26 |
|
simp2 |
|
27 |
26
|
eldifad |
|
28 |
|
simp3 |
|
29 |
28
|
eldifad |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
1 2 30 31
|
marrepeval |
|
33 |
22 23 24 25 27 29 32
|
syl222anc |
|
34 |
|
eldifsn |
|
35 |
26 34
|
sylib |
|
36 |
35
|
simprd |
|
37 |
36
|
neneqd |
|
38 |
37
|
iffalsed |
|
39 |
21 33 38
|
3eqtrrd |
|
40 |
1 2 3 4 5 7 19 39
|
submateq |
|