Metamath Proof Explorer


Theorem submatminr1

Description: If we take a submatrix by removing the row I and column J , then the result is the same on the matrix with row I and column J modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020)

Ref Expression
Hypotheses submateq.a A = 1 N Mat R
submateq.b B = Base A
submateq.n φ N
submateq.i φ I 1 N
submateq.j φ J 1 N
submatminr1.r φ R Ring
submatminr1.m φ M B
submatminr1.e E = I 1 N minMatR1 R M J
Assertion submatminr1 φ I subMat 1 M J = I subMat 1 E J

Proof

Step Hyp Ref Expression
1 submateq.a A = 1 N Mat R
2 submateq.b B = Base A
3 submateq.n φ N
4 submateq.i φ I 1 N
5 submateq.j φ J 1 N
6 submatminr1.r φ R Ring
7 submatminr1.m φ M B
8 submatminr1.e E = I 1 N minMatR1 R M J
9 eqid 1 R = 1 R
10 1 2 9 minmar1marrep R Ring M B 1 N minMatR1 R M = M 1 N matRRep R 1 R
11 6 7 10 syl2anc φ 1 N minMatR1 R M = M 1 N matRRep R 1 R
12 11 oveqd φ I 1 N minMatR1 R M J = I M 1 N matRRep R 1 R J
13 8 12 eqtrid φ E = I M 1 N matRRep R 1 R J
14 eqid Base R = Base R
15 14 9 ringidcl R Ring 1 R Base R
16 6 15 syl φ 1 R Base R
17 1 2 marrepcl R Ring M B 1 R Base R I 1 N J 1 N I M 1 N matRRep R 1 R J B
18 6 7 16 4 5 17 syl32anc φ I M 1 N matRRep R 1 R J B
19 13 18 eqeltrd φ E B
20 13 3ad2ant1 φ i 1 N I j 1 N J E = I M 1 N matRRep R 1 R J
21 20 oveqd φ i 1 N I j 1 N J i E j = i I M 1 N matRRep R 1 R J j
22 7 3ad2ant1 φ i 1 N I j 1 N J M B
23 16 3ad2ant1 φ i 1 N I j 1 N J 1 R Base R
24 4 3ad2ant1 φ i 1 N I j 1 N J I 1 N
25 5 3ad2ant1 φ i 1 N I j 1 N J J 1 N
26 simp2 φ i 1 N I j 1 N J i 1 N I
27 26 eldifad φ i 1 N I j 1 N J i 1 N
28 simp3 φ i 1 N I j 1 N J j 1 N J
29 28 eldifad φ i 1 N I j 1 N J j 1 N
30 eqid 1 N matRRep R = 1 N matRRep R
31 eqid 0 R = 0 R
32 1 2 30 31 marrepeval M B 1 R Base R I 1 N J 1 N i 1 N j 1 N i I M 1 N matRRep R 1 R J j = if i = I if j = J 1 R 0 R i M j
33 22 23 24 25 27 29 32 syl222anc φ i 1 N I j 1 N J i I M 1 N matRRep R 1 R J j = if i = I if j = J 1 R 0 R i M j
34 eldifsn i 1 N I i 1 N i I
35 26 34 sylib φ i 1 N I j 1 N J i 1 N i I
36 35 simprd φ i 1 N I j 1 N J i I
37 36 neneqd φ i 1 N I j 1 N J ¬ i = I
38 37 iffalsed φ i 1 N I j 1 N J if i = I if j = J 1 R 0 R i M j = i M j
39 21 33 38 3eqtrrd φ i 1 N I j 1 N J i M j = i E j
40 1 2 3 4 5 7 19 39 submateq φ I subMat 1 M J = I subMat 1 E J