Metamath Proof Explorer


Theorem subrgugrp

Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrgugrp.1 S=R𝑠A
subrgugrp.2 U=UnitR
subrgugrp.3 V=UnitS
subrgugrp.4 G=mulGrpR𝑠U
Assertion subrgugrp ASubRingRVSubGrpG

Proof

Step Hyp Ref Expression
1 subrgugrp.1 S=R𝑠A
2 subrgugrp.2 U=UnitR
3 subrgugrp.3 V=UnitS
4 subrgugrp.4 G=mulGrpR𝑠U
5 1 2 3 subrguss ASubRingRVU
6 1 subrgring ASubRingRSRing
7 eqid 1S=1S
8 3 7 1unit SRing1SV
9 ne0i 1SVV
10 6 8 9 3syl ASubRingRV
11 eqid R=R
12 1 11 ressmulr ASubRingRR=S
13 12 3ad2ant1 ASubRingRxVyVR=S
14 13 oveqd ASubRingRxVyVxRy=xSy
15 eqid S=S
16 3 15 unitmulcl SRingxVyVxSyV
17 6 16 syl3an1 ASubRingRxVyVxSyV
18 14 17 eqeltrd ASubRingRxVyVxRyV
19 18 3expa ASubRingRxVyVxRyV
20 19 ralrimiva ASubRingRxVyVxRyV
21 eqid invrR=invrR
22 eqid invrS=invrS
23 1 21 3 22 subrginv ASubRingRxVinvrRx=invrSx
24 3 22 unitinvcl SRingxVinvrSxV
25 6 24 sylan ASubRingRxVinvrSxV
26 23 25 eqeltrd ASubRingRxVinvrRxV
27 20 26 jca ASubRingRxVyVxRyVinvrRxV
28 27 ralrimiva ASubRingRxVyVxRyVinvrRxV
29 subrgrcl ASubRingRRRing
30 2 4 unitgrp RRingGGrp
31 2 4 unitgrpbas U=BaseG
32 2 fvexi UV
33 eqid mulGrpR=mulGrpR
34 33 11 mgpplusg R=+mulGrpR
35 4 34 ressplusg UVR=+G
36 32 35 ax-mp R=+G
37 2 4 21 invrfval invrR=invgG
38 31 36 37 issubg2 GGrpVSubGrpGVUVxVyVxRyVinvrRxV
39 29 30 38 3syl ASubRingRVSubGrpGVUVxVyVxRyVinvrRxV
40 5 10 28 39 mpbir3and ASubRingRVSubGrpG