Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrgugrp.1 | |
|
subrgugrp.2 | |
||
subrgugrp.3 | |
||
subrgugrp.4 | |
||
Assertion | subrgugrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgugrp.1 | |
|
2 | subrgugrp.2 | |
|
3 | subrgugrp.3 | |
|
4 | subrgugrp.4 | |
|
5 | 1 2 3 | subrguss | |
6 | 1 | subrgring | |
7 | eqid | |
|
8 | 3 7 | 1unit | |
9 | ne0i | |
|
10 | 6 8 9 | 3syl | |
11 | eqid | |
|
12 | 1 11 | ressmulr | |
13 | 12 | 3ad2ant1 | |
14 | 13 | oveqd | |
15 | eqid | |
|
16 | 3 15 | unitmulcl | |
17 | 6 16 | syl3an1 | |
18 | 14 17 | eqeltrd | |
19 | 18 | 3expa | |
20 | 19 | ralrimiva | |
21 | eqid | |
|
22 | eqid | |
|
23 | 1 21 3 22 | subrginv | |
24 | 3 22 | unitinvcl | |
25 | 6 24 | sylan | |
26 | 23 25 | eqeltrd | |
27 | 20 26 | jca | |
28 | 27 | ralrimiva | |
29 | subrgrcl | |
|
30 | 2 4 | unitgrp | |
31 | 2 4 | unitgrpbas | |
32 | 2 | fvexi | |
33 | eqid | |
|
34 | 33 11 | mgpplusg | |
35 | 4 34 | ressplusg | |
36 | 32 35 | ax-mp | |
37 | 2 4 21 | invrfval | |
38 | 31 36 37 | issubg2 | |
39 | 29 30 38 | 3syl | |
40 | 5 10 28 39 | mpbir3and | |