Metamath Proof Explorer


Theorem subumgr

Description: A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020)

Ref Expression
Assertion subumgr GUMGraphSSubGraphGSUMGraph

Proof

Step Hyp Ref Expression
1 eqid VtxS=VtxS
2 eqid VtxG=VtxG
3 eqid iEdgS=iEdgS
4 eqid iEdgG=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVtxSVtxGiEdgSiEdgGEdgS𝒫VtxS
7 umgruhgr GUMGraphGUHGraph
8 subgruhgrfun GUHGraphSSubGraphGFuniEdgS
9 7 8 sylan GUMGraphSSubGraphGFuniEdgS
10 9 ancoms SSubGraphGGUMGraphFuniEdgS
11 10 funfnd SSubGraphGGUMGraphiEdgSFndomiEdgS
12 11 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphiEdgSFndomiEdgS
13 simplrl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphxdomiEdgSSSubGraphG
14 simplrr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphxdomiEdgSGUMGraph
15 simpr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphxdomiEdgSxdomiEdgS
16 1 3 subumgredg2 SSubGraphGGUMGraphxdomiEdgSiEdgSxe𝒫VtxS|e=2
17 13 14 15 16 syl3anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphxdomiEdgSiEdgSxe𝒫VtxS|e=2
18 17 ralrimiva VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphxdomiEdgSiEdgSxe𝒫VtxS|e=2
19 fnfvrnss iEdgSFndomiEdgSxdomiEdgSiEdgSxe𝒫VtxS|e=2raniEdgSe𝒫VtxS|e=2
20 12 18 19 syl2anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphraniEdgSe𝒫VtxS|e=2
21 df-f iEdgS:domiEdgSe𝒫VtxS|e=2iEdgSFndomiEdgSraniEdgSe𝒫VtxS|e=2
22 12 20 21 sylanbrc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphiEdgS:domiEdgSe𝒫VtxS|e=2
23 subgrv SSubGraphGSVGV
24 1 3 isumgrs SVSUMGraphiEdgS:domiEdgSe𝒫VtxS|e=2
25 24 adantr SVGVSUMGraphiEdgS:domiEdgSe𝒫VtxS|e=2
26 23 25 syl SSubGraphGSUMGraphiEdgS:domiEdgSe𝒫VtxS|e=2
27 26 ad2antrl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphSUMGraphiEdgS:domiEdgSe𝒫VtxS|e=2
28 22 27 mpbird VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphSUMGraph
29 28 ex VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUMGraphSUMGraph
30 6 29 syl SSubGraphGSSubGraphGGUMGraphSUMGraph
31 30 anabsi8 GUMGraphSSubGraphGSUMGraph