| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 2 3 4 5 | subgrprop2 |  | 
						
							| 7 |  | umgruhgr |  | 
						
							| 8 |  | subgruhgrfun |  | 
						
							| 9 | 7 8 | sylan |  | 
						
							| 10 | 9 | ancoms |  | 
						
							| 11 | 10 | funfnd |  | 
						
							| 12 | 11 | adantl |  | 
						
							| 13 |  | simplrl |  | 
						
							| 14 |  | simplrr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 1 3 | subumgredg2 |  | 
						
							| 17 | 13 14 15 16 | syl3anc |  | 
						
							| 18 | 17 | ralrimiva |  | 
						
							| 19 |  | fnfvrnss |  | 
						
							| 20 | 12 18 19 | syl2anc |  | 
						
							| 21 |  | df-f |  | 
						
							| 22 | 12 20 21 | sylanbrc |  | 
						
							| 23 |  | subgrv |  | 
						
							| 24 | 1 3 | isumgrs |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 | 26 | ad2antrl |  | 
						
							| 28 | 22 27 | mpbird |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 6 29 | syl |  | 
						
							| 31 | 30 | anabsi8 |  |