| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumsnf.1 |  | 
						
							| 2 |  | sumsnf.2 |  | 
						
							| 3 |  | csbeq1a |  | 
						
							| 4 |  | nfcv |  | 
						
							| 5 |  | nfcsb1v |  | 
						
							| 6 | 3 4 5 | cbvsum |  | 
						
							| 7 |  | csbeq1 |  | 
						
							| 8 |  | 1nn |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | simpl |  | 
						
							| 11 |  | f1osng |  | 
						
							| 12 | 8 10 11 | sylancr |  | 
						
							| 13 |  | 1z |  | 
						
							| 14 |  | fzsn |  | 
						
							| 15 |  | f1oeq2 |  | 
						
							| 16 | 13 14 15 | mp2b |  | 
						
							| 17 | 12 16 | sylibr |  | 
						
							| 18 |  | elsni |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 19 | csbeq1d |  | 
						
							| 21 | 1 | a1i |  | 
						
							| 22 | 21 2 | csbiegf |  | 
						
							| 23 | 22 | ad2antrr |  | 
						
							| 24 |  | simplr |  | 
						
							| 25 | 23 24 | eqeltrd |  | 
						
							| 26 | 20 25 | eqeltrd |  | 
						
							| 27 | 22 | ad2antrr |  | 
						
							| 28 |  | elfz1eq |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 |  | fvsng |  | 
						
							| 31 | 8 10 30 | sylancr |  | 
						
							| 32 | 29 31 | sylan9eqr |  | 
						
							| 33 | 32 | csbeq1d |  | 
						
							| 34 | 28 | fveq2d |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | fvsng |  | 
						
							| 37 | 8 35 36 | sylancr |  | 
						
							| 38 | 34 37 | sylan9eqr |  | 
						
							| 39 | 27 33 38 | 3eqtr4rd |  | 
						
							| 40 | 7 9 17 26 39 | fsum |  | 
						
							| 41 | 6 40 | eqtrid |  | 
						
							| 42 | 13 37 | seq1i |  | 
						
							| 43 | 41 42 | eqtrd |  |