Metamath Proof Explorer


Theorem sumsnf

Description: A sum of a singleton is the term. A version of sumsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses sumsnf.1 _kB
sumsnf.2 k=MA=B
Assertion sumsnf MVBkMA=B

Proof

Step Hyp Ref Expression
1 sumsnf.1 _kB
2 sumsnf.2 k=MA=B
3 nfcv _mA
4 nfcsb1v _km/kA
5 csbeq1a k=mA=m/kA
6 3 4 5 cbvsumi kMA=mMm/kA
7 csbeq1 m=1Mnm/kA=1Mn/kA
8 1nn 1
9 8 a1i MVB1
10 simpl MVBMV
11 f1osng 1MV1M:11-1 ontoM
12 8 10 11 sylancr MVB1M:11-1 ontoM
13 1z 1
14 fzsn 111=1
15 f1oeq2 11=11M:111-1 ontoM1M:11-1 ontoM
16 13 14 15 mp2b 1M:111-1 ontoM1M:11-1 ontoM
17 12 16 sylibr MVB1M:111-1 ontoM
18 elsni mMm=M
19 18 adantl MVBmMm=M
20 19 csbeq1d MVBmMm/kA=M/kA
21 1 a1i MV_kB
22 21 2 csbiegf MVM/kA=B
23 22 ad2antrr MVBmMM/kA=B
24 simplr MVBmMB
25 23 24 eqeltrd MVBmMM/kA
26 20 25 eqeltrd MVBmMm/kA
27 22 ad2antrr MVBn11M/kA=B
28 elfz1eq n11n=1
29 28 fveq2d n111Mn=1M1
30 fvsng 1MV1M1=M
31 8 10 30 sylancr MVB1M1=M
32 29 31 sylan9eqr MVBn111Mn=M
33 32 csbeq1d MVBn111Mn/kA=M/kA
34 28 fveq2d n111Bn=1B1
35 simpr MVBB
36 fvsng 1B1B1=B
37 8 35 36 sylancr MVB1B1=B
38 34 37 sylan9eqr MVBn111Bn=B
39 27 33 38 3eqtr4rd MVBn111Bn=1Mn/kA
40 7 9 17 26 39 fsum MVBmMm/kA=seq1+1B1
41 6 40 eqtrid MVBkMA=seq1+1B1
42 13 37 seq1i MVBseq1+1B1=B
43 41 42 eqtrd MVBkMA=B