Description: A sum of a singleton is the term. A version of sumsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumsnf.1 | |
|
sumsnf.2 | |
||
Assertion | sumsnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumsnf.1 | |
|
2 | sumsnf.2 | |
|
3 | nfcv | |
|
4 | nfcsb1v | |
|
5 | csbeq1a | |
|
6 | 3 4 5 | cbvsumi | |
7 | csbeq1 | |
|
8 | 1nn | |
|
9 | 8 | a1i | |
10 | simpl | |
|
11 | f1osng | |
|
12 | 8 10 11 | sylancr | |
13 | 1z | |
|
14 | fzsn | |
|
15 | f1oeq2 | |
|
16 | 13 14 15 | mp2b | |
17 | 12 16 | sylibr | |
18 | elsni | |
|
19 | 18 | adantl | |
20 | 19 | csbeq1d | |
21 | 1 | a1i | |
22 | 21 2 | csbiegf | |
23 | 22 | ad2antrr | |
24 | simplr | |
|
25 | 23 24 | eqeltrd | |
26 | 20 25 | eqeltrd | |
27 | 22 | ad2antrr | |
28 | elfz1eq | |
|
29 | 28 | fveq2d | |
30 | fvsng | |
|
31 | 8 10 30 | sylancr | |
32 | 29 31 | sylan9eqr | |
33 | 32 | csbeq1d | |
34 | 28 | fveq2d | |
35 | simpr | |
|
36 | fvsng | |
|
37 | 8 35 36 | sylancr | |
38 | 34 37 | sylan9eqr | |
39 | 27 33 38 | 3eqtr4rd | |
40 | 7 9 17 26 39 | fsum | |
41 | 6 40 | eqtrid | |
42 | 13 37 | seq1i | |
43 | 41 42 | eqtrd | |