Metamath Proof Explorer


Theorem suppssfv

Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssfv.a φxDAsuppYL
suppssfv.f φFY=Z
suppssfv.v φxDAV
suppssfv.y φYU
Assertion suppssfv φxDFAsuppZL

Proof

Step Hyp Ref Expression
1 suppssfv.a φxDAsuppYL
2 suppssfv.f φFY=Z
3 suppssfv.v φxDAV
4 suppssfv.y φYU
5 eldifsni FAVZFAZ
6 3 elexd φxDAV
7 6 ad4ant23 DVZVφxDFAZAV
8 fveqeq2 A=YFA=ZFY=Z
9 2 8 syl5ibrcom φA=YFA=Z
10 9 necon3d φFAZAY
11 10 ad2antlr DVZVφxDFAZAY
12 11 imp DVZVφxDFAZAY
13 eldifsn AVYAVAY
14 7 12 13 sylanbrc DVZVφxDFAZAVY
15 14 ex DVZVφxDFAZAVY
16 5 15 syl5 DVZVφxDFAVZAVY
17 16 ss2rabdv DVZVφxD|FAVZxD|AVY
18 eqid xDFA=xDFA
19 simpll DVZVφDV
20 simplr DVZVφZV
21 18 19 20 mptsuppdifd DVZVφxDFAsuppZ=xD|FAVZ
22 eqid xDA=xDA
23 4 adantl DVZVφYU
24 22 19 23 mptsuppdifd DVZVφxDAsuppY=xD|AVY
25 17 21 24 3sstr4d DVZVφxDFAsuppZxDAsuppY
26 1 adantl DVZVφxDAsuppYL
27 25 26 sstrd DVZVφxDFAsuppZL
28 27 ex DVZVφxDFAsuppZL
29 mptexg DVxDFAV
30 fvex FAV
31 30 rgenw xDFAV
32 dmmptg xDFAVdomxDFA=D
33 31 32 ax-mp domxDFA=D
34 dmexg xDFAVdomxDFAV
35 33 34 eqeltrrid xDFAVDV
36 29 35 impbii DVxDFAV
37 36 anbi1i DVZVxDFAVZV
38 supp0prc ¬xDFAVZVxDFAsuppZ=
39 37 38 sylnbi ¬DVZVxDFAsuppZ=
40 0ss L
41 39 40 eqsstrdi ¬DVZVxDFAsuppZL
42 41 a1d ¬DVZVφxDFAsuppZL
43 28 42 pm2.61i φxDFAsuppZL