Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppssfv.a | |
|
suppssfv.f | |
||
suppssfv.v | |
||
suppssfv.y | |
||
Assertion | suppssfv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssfv.a | |
|
2 | suppssfv.f | |
|
3 | suppssfv.v | |
|
4 | suppssfv.y | |
|
5 | eldifsni | |
|
6 | 3 | elexd | |
7 | 6 | ad4ant23 | |
8 | fveqeq2 | |
|
9 | 2 8 | syl5ibrcom | |
10 | 9 | necon3d | |
11 | 10 | ad2antlr | |
12 | 11 | imp | |
13 | eldifsn | |
|
14 | 7 12 13 | sylanbrc | |
15 | 14 | ex | |
16 | 5 15 | syl5 | |
17 | 16 | ss2rabdv | |
18 | eqid | |
|
19 | simpll | |
|
20 | simplr | |
|
21 | 18 19 20 | mptsuppdifd | |
22 | eqid | |
|
23 | 4 | adantl | |
24 | 22 19 23 | mptsuppdifd | |
25 | 17 21 24 | 3sstr4d | |
26 | 1 | adantl | |
27 | 25 26 | sstrd | |
28 | 27 | ex | |
29 | mptexg | |
|
30 | fvex | |
|
31 | 30 | rgenw | |
32 | dmmptg | |
|
33 | 31 32 | ax-mp | |
34 | dmexg | |
|
35 | 33 34 | eqeltrrid | |
36 | 29 35 | impbii | |
37 | 36 | anbi1i | |
38 | supp0prc | |
|
39 | 37 38 | sylnbi | |
40 | 0ss | |
|
41 | 39 40 | eqsstrdi | |
42 | 41 | a1d | |
43 | 28 42 | pm2.61i | |