| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatcl |  | 
						
							| 2 |  | swrdcl |  | 
						
							| 3 |  | wrdfn |  | 
						
							| 4 | 1 2 3 | 3syl |  | 
						
							| 5 |  | lencl |  | 
						
							| 6 |  | nn0uz |  | 
						
							| 7 | 5 6 | eleqtrdi |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 5 | nn0zd |  | 
						
							| 10 | 9 | uzidd |  | 
						
							| 11 |  | lencl |  | 
						
							| 12 |  | uzaddcl |  | 
						
							| 13 | 10 11 12 | syl2an |  | 
						
							| 14 |  | elfzuzb |  | 
						
							| 15 | 8 13 14 | sylanbrc |  | 
						
							| 16 |  | nn0addcl |  | 
						
							| 17 | 5 11 16 | syl2an |  | 
						
							| 18 | 17 6 | eleqtrdi |  | 
						
							| 19 | 17 | nn0zd |  | 
						
							| 20 | 19 | uzidd |  | 
						
							| 21 |  | elfzuzb |  | 
						
							| 22 | 18 20 21 | sylanbrc |  | 
						
							| 23 |  | ccatlen |  | 
						
							| 24 | 23 | oveq2d |  | 
						
							| 25 | 22 24 | eleqtrrd |  | 
						
							| 26 |  | swrdlen |  | 
						
							| 27 | 1 15 25 26 | syl3anc |  | 
						
							| 28 | 5 | nn0cnd |  | 
						
							| 29 | 11 | nn0cnd |  | 
						
							| 30 |  | pncan2 |  | 
						
							| 31 | 28 29 30 | syl2an |  | 
						
							| 32 | 27 31 | eqtrd |  | 
						
							| 33 | 32 | oveq2d |  | 
						
							| 34 | 33 | fneq2d |  | 
						
							| 35 | 4 34 | mpbid |  | 
						
							| 36 |  | wrdfn |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 1 15 25 | 3jca |  | 
						
							| 39 | 31 | oveq2d |  | 
						
							| 40 | 39 | eleq2d |  | 
						
							| 41 | 40 | biimpar |  | 
						
							| 42 |  | swrdfv |  | 
						
							| 43 | 38 41 42 | syl2an2r |  | 
						
							| 44 |  | ccatval3 |  | 
						
							| 45 | 44 | 3expa |  | 
						
							| 46 | 43 45 | eqtrd |  | 
						
							| 47 | 35 37 46 | eqfnfvd |  |