Metamath Proof Explorer


Theorem swrdccat2

Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion swrdccat2 SWordBTWordBS++TsubstrSS+T=T

Proof

Step Hyp Ref Expression
1 ccatcl SWordBTWordBS++TWordB
2 swrdcl S++TWordBS++TsubstrSS+TWordB
3 wrdfn S++TsubstrSS+TWordBS++TsubstrSS+TFn0..^S++TsubstrSS+T
4 1 2 3 3syl SWordBTWordBS++TsubstrSS+TFn0..^S++TsubstrSS+T
5 lencl SWordBS0
6 nn0uz 0=0
7 5 6 eleqtrdi SWordBS0
8 7 adantr SWordBTWordBS0
9 5 nn0zd SWordBS
10 9 uzidd SWordBSS
11 lencl TWordBT0
12 uzaddcl SST0S+TS
13 10 11 12 syl2an SWordBTWordBS+TS
14 elfzuzb S0S+TS0S+TS
15 8 13 14 sylanbrc SWordBTWordBS0S+T
16 nn0addcl S0T0S+T0
17 5 11 16 syl2an SWordBTWordBS+T0
18 17 6 eleqtrdi SWordBTWordBS+T0
19 17 nn0zd SWordBTWordBS+T
20 19 uzidd SWordBTWordBS+TS+T
21 elfzuzb S+T0S+TS+T0S+TS+T
22 18 20 21 sylanbrc SWordBTWordBS+T0S+T
23 ccatlen SWordBTWordBS++T=S+T
24 23 oveq2d SWordBTWordB0S++T=0S+T
25 22 24 eleqtrrd SWordBTWordBS+T0S++T
26 swrdlen S++TWordBS0S+TS+T0S++TS++TsubstrSS+T=S+T-S
27 1 15 25 26 syl3anc SWordBTWordBS++TsubstrSS+T=S+T-S
28 5 nn0cnd SWordBS
29 11 nn0cnd TWordBT
30 pncan2 STS+T-S=T
31 28 29 30 syl2an SWordBTWordBS+T-S=T
32 27 31 eqtrd SWordBTWordBS++TsubstrSS+T=T
33 32 oveq2d SWordBTWordB0..^S++TsubstrSS+T=0..^T
34 33 fneq2d SWordBTWordBS++TsubstrSS+TFn0..^S++TsubstrSS+TS++TsubstrSS+TFn0..^T
35 4 34 mpbid SWordBTWordBS++TsubstrSS+TFn0..^T
36 wrdfn TWordBTFn0..^T
37 36 adantl SWordBTWordBTFn0..^T
38 1 15 25 3jca SWordBTWordBS++TWordBS0S+TS+T0S++T
39 31 oveq2d SWordBTWordB0..^S+T-S=0..^T
40 39 eleq2d SWordBTWordBk0..^S+T-Sk0..^T
41 40 biimpar SWordBTWordBk0..^Tk0..^S+T-S
42 swrdfv S++TWordBS0S+TS+T0S++Tk0..^S+T-SS++TsubstrSS+Tk=S++Tk+S
43 38 41 42 syl2an2r SWordBTWordBk0..^TS++TsubstrSS+Tk=S++Tk+S
44 ccatval3 SWordBTWordBk0..^TS++Tk+S=Tk
45 44 3expa SWordBTWordBk0..^TS++Tk+S=Tk
46 43 45 eqtrd SWordBTWordBk0..^TS++TsubstrSS+Tk=Tk
47 35 37 46 eqfnfvd SWordBTWordBS++TsubstrSS+T=T