Metamath Proof Explorer


Theorem swrdcl

Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion swrdcl SWordASsubstrFLWordA

Proof

Step Hyp Ref Expression
1 eleq1 SsubstrFL=SsubstrFLWordAWordA
2 n0 SsubstrFLxxSsubstrFL
3 df-substr substr=sV,b×if1stb..^2ndbdomsx0..^2ndb1stbsx+1stb
4 3 elmpocl2 xSsubstrFLFL×
5 opelxp FL×FL
6 4 5 sylib xSsubstrFLFL
7 6 exlimiv xxSsubstrFLFL
8 2 7 sylbi SsubstrFLFL
9 swrdval SWordAFLSsubstrFL=ifF..^LdomSx0..^LFSx+F
10 wrdf SWordAS:0..^SA
11 10 3ad2ant1 SWordAFLS:0..^SA
12 11 ad2antrr SWordAFLF..^LdomSx0..^LFS:0..^SA
13 simplr SWordAFLF..^LdomSx0..^LFF..^LdomS
14 simpr SWordAFLF..^LdomSx0..^LFx0..^LF
15 simpll3 SWordAFLF..^LdomSx0..^LFL
16 simpll2 SWordAFLF..^LdomSx0..^LFF
17 fzoaddel2 x0..^LFLFx+FF..^L
18 14 15 16 17 syl3anc SWordAFLF..^LdomSx0..^LFx+FF..^L
19 13 18 sseldd SWordAFLF..^LdomSx0..^LFx+FdomS
20 12 fdmd SWordAFLF..^LdomSx0..^LFdomS=0..^S
21 19 20 eleqtrd SWordAFLF..^LdomSx0..^LFx+F0..^S
22 12 21 ffvelcdmd SWordAFLF..^LdomSx0..^LFSx+FA
23 22 fmpttd SWordAFLF..^LdomSx0..^LFSx+F:0..^LFA
24 iswrdi x0..^LFSx+F:0..^LFAx0..^LFSx+FWordA
25 23 24 syl SWordAFLF..^LdomSx0..^LFSx+FWordA
26 wrd0 WordA
27 26 a1i SWordAFL¬F..^LdomSWordA
28 25 27 ifclda SWordAFLifF..^LdomSx0..^LFSx+FWordA
29 9 28 eqeltrd SWordAFLSsubstrFLWordA
30 29 3expb SWordAFLSsubstrFLWordA
31 8 30 sylan2 SWordASsubstrFLSsubstrFLWordA
32 26 a1i SWordAWordA
33 1 31 32 pm2.61ne SWordASsubstrFLWordA