| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow1.x |  | 
						
							| 2 |  | sylow1.g |  | 
						
							| 3 |  | sylow1.f |  | 
						
							| 4 |  | sylow1.p |  | 
						
							| 5 |  | sylow1.n |  | 
						
							| 6 |  | sylow1.d |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 | 9 | cbvmptv |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 11 | mpteq2dv |  | 
						
							| 13 | 10 12 | eqtrid |  | 
						
							| 14 | 13 | rneqd |  | 
						
							| 15 |  | mpteq1 |  | 
						
							| 16 | 15 | rneqd |  | 
						
							| 17 | 14 16 | cbvmpov |  | 
						
							| 18 |  | preq12 |  | 
						
							| 19 | 18 | sseq1d |  | 
						
							| 20 |  | oveq2 |  | 
						
							| 21 |  | id |  | 
						
							| 22 | 20 21 | eqeqan12d |  | 
						
							| 23 | 22 | rexbidv |  | 
						
							| 24 | 19 23 | anbi12d |  | 
						
							| 25 | 24 | cbvopabv |  | 
						
							| 26 | 1 2 3 4 5 6 7 8 17 25 | sylow1lem3 |  | 
						
							| 27 | 2 | adantr |  | 
						
							| 28 | 3 | adantr |  | 
						
							| 29 | 4 | adantr |  | 
						
							| 30 | 5 | adantr |  | 
						
							| 31 | 6 | adantr |  | 
						
							| 32 |  | simprl |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | simprr |  | 
						
							| 35 | 1 27 28 29 30 31 7 8 17 25 32 33 34 | sylow1lem5 |  | 
						
							| 36 | 26 35 | rexlimddv |  |