Metamath Proof Explorer


Theorem sylow1

Description: Sylow's first theorem. If P ^ N is a prime power that divides the cardinality of G , then G has a supgroup with size P ^ N . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses sylow1.x X=BaseG
sylow1.g φGGrp
sylow1.f φXFin
sylow1.p φP
sylow1.n φN0
sylow1.d φPNX
Assertion sylow1 φgSubGrpGg=PN

Proof

Step Hyp Ref Expression
1 sylow1.x X=BaseG
2 sylow1.g φGGrp
3 sylow1.f φXFin
4 sylow1.p φP
5 sylow1.n φN0
6 sylow1.d φPNX
7 eqid +G=+G
8 eqid s𝒫X|s=PN=s𝒫X|s=PN
9 oveq2 s=zu+Gs=u+Gz
10 9 cbvmptv svu+Gs=zvu+Gz
11 oveq1 u=xu+Gz=x+Gz
12 11 mpteq2dv u=xzvu+Gz=zvx+Gz
13 10 12 eqtrid u=xsvu+Gs=zvx+Gz
14 13 rneqd u=xransvu+Gs=ranzvx+Gz
15 mpteq1 v=yzvx+Gz=zyx+Gz
16 15 rneqd v=yranzvx+Gz=ranzyx+Gz
17 14 16 cbvmpov uX,vs𝒫X|s=PNransvu+Gs=xX,ys𝒫X|s=PNranzyx+Gz
18 preq12 a=xb=yab=xy
19 18 sseq1d a=xb=yabs𝒫X|s=PNxys𝒫X|s=PN
20 oveq2 a=xkuX,vs𝒫X|s=PNransvu+Gsa=kuX,vs𝒫X|s=PNransvu+Gsx
21 id b=yb=y
22 20 21 eqeqan12d a=xb=ykuX,vs𝒫X|s=PNransvu+Gsa=bkuX,vs𝒫X|s=PNransvu+Gsx=y
23 22 rexbidv a=xb=ykXkuX,vs𝒫X|s=PNransvu+Gsa=bkXkuX,vs𝒫X|s=PNransvu+Gsx=y
24 19 23 anbi12d a=xb=yabs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bxys𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsx=y
25 24 cbvopabv ab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=b=xy|xys𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsx=y
26 1 2 3 4 5 6 7 8 17 25 sylow1lem3 φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXN
27 2 adantr φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNGGrp
28 3 adantr φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNXFin
29 4 adantr φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNP
30 5 adantr φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNN0
31 6 adantr φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNPNX
32 simprl φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNhs𝒫X|s=PN
33 eqid tX|tuX,vs𝒫X|s=PNransvu+Gsh=h=tX|tuX,vs𝒫X|s=PNransvu+Gsh=h
34 simprr φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXN
35 1 27 28 29 30 31 7 8 17 25 32 33 34 sylow1lem5 φhs𝒫X|s=PNPpCnthab|abs𝒫X|s=PNkXkuX,vs𝒫X|s=PNransvu+Gsa=bPpCntXNgSubGrpGg=PN
36 26 35 rexlimddv φgSubGrpGg=PN