Description: Sylow's first theorem. If P ^ N is a prime power that divides the cardinality of G , then G has a supgroup with size P ^ N . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylow1.x | |
|
sylow1.g | |
||
sylow1.f | |
||
sylow1.p | |
||
sylow1.n | |
||
sylow1.d | |
||
Assertion | sylow1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow1.x | |
|
2 | sylow1.g | |
|
3 | sylow1.f | |
|
4 | sylow1.p | |
|
5 | sylow1.n | |
|
6 | sylow1.d | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | oveq2 | |
|
10 | 9 | cbvmptv | |
11 | oveq1 | |
|
12 | 11 | mpteq2dv | |
13 | 10 12 | eqtrid | |
14 | 13 | rneqd | |
15 | mpteq1 | |
|
16 | 15 | rneqd | |
17 | 14 16 | cbvmpov | |
18 | preq12 | |
|
19 | 18 | sseq1d | |
20 | oveq2 | |
|
21 | id | |
|
22 | 20 21 | eqeqan12d | |
23 | 22 | rexbidv | |
24 | 19 23 | anbi12d | |
25 | 24 | cbvopabv | |
26 | 1 2 3 4 5 6 7 8 17 25 | sylow1lem3 | |
27 | 2 | adantr | |
28 | 3 | adantr | |
29 | 4 | adantr | |
30 | 5 | adantr | |
31 | 6 | adantr | |
32 | simprl | |
|
33 | eqid | |
|
34 | simprr | |
|
35 | 1 27 28 29 30 31 7 8 17 25 32 33 34 | sylow1lem5 | |
36 | 26 35 | rexlimddv | |