Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of | G | / d , where d is the common order of a Sylow subgroup, and is equivalent to 1 mod P . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylow3.x | |
|
sylow3.g | |
||
sylow3.xf | |
||
sylow3.p | |
||
sylow3.n | |
||
Assertion | sylow3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3.x | |
|
2 | sylow3.g | |
|
3 | sylow3.xf | |
|
4 | sylow3.p | |
|
5 | sylow3.n | |
|
6 | 1 | slwn0 | |
7 | 2 3 4 6 | syl3anc | |
8 | n0 | |
|
9 | 7 8 | sylib | |
10 | 2 | adantr | |
11 | 3 | adantr | |
12 | 4 | adantr | |
13 | eqid | |
|
14 | eqid | |
|
15 | oveq2 | |
|
16 | 15 | oveq1d | |
17 | 16 | cbvmptv | |
18 | oveq1 | |
|
19 | id | |
|
20 | 18 19 | oveq12d | |
21 | 20 | mpteq2dv | |
22 | 17 21 | eqtrid | |
23 | 22 | rneqd | |
24 | mpteq1 | |
|
25 | 24 | rneqd | |
26 | 23 25 | cbvmpov | |
27 | simpr | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | 1 10 11 12 13 14 26 27 28 29 | sylow3lem4 | |
31 | 5 30 | eqbrtrid | |
32 | 5 | oveq1i | |
33 | 23 25 | cbvmpov | |
34 | eqid | |
|
35 | 1 10 11 12 13 14 27 33 34 | sylow3lem6 | |
36 | 32 35 | eqtrid | |
37 | 31 36 | jca | |
38 | 9 37 | exlimddv | |