Metamath Proof Explorer


Theorem sylow3

Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of | G | / d , where d is the common order of a Sylow subgroup, and is equivalent to 1 mod P . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X = Base G
sylow3.g φ G Grp
sylow3.xf φ X Fin
sylow3.p φ P
sylow3.n N = P pSyl G
Assertion sylow3 φ N X P P pCnt X N mod P = 1

Proof

Step Hyp Ref Expression
1 sylow3.x X = Base G
2 sylow3.g φ G Grp
3 sylow3.xf φ X Fin
4 sylow3.p φ P
5 sylow3.n N = P pSyl G
6 1 slwn0 G Grp X Fin P P pSyl G
7 2 3 4 6 syl3anc φ P pSyl G
8 n0 P pSyl G k k P pSyl G
9 7 8 sylib φ k k P pSyl G
10 2 adantr φ k P pSyl G G Grp
11 3 adantr φ k P pSyl G X Fin
12 4 adantr φ k P pSyl G P
13 eqid + G = + G
14 eqid - G = - G
15 oveq2 c = z a + G c = a + G z
16 15 oveq1d c = z a + G c - G a = a + G z - G a
17 16 cbvmptv c b a + G c - G a = z b a + G z - G a
18 oveq1 a = x a + G z = x + G z
19 id a = x a = x
20 18 19 oveq12d a = x a + G z - G a = x + G z - G x
21 20 mpteq2dv a = x z b a + G z - G a = z b x + G z - G x
22 17 21 syl5eq a = x c b a + G c - G a = z b x + G z - G x
23 22 rneqd a = x ran c b a + G c - G a = ran z b x + G z - G x
24 mpteq1 b = y z b x + G z - G x = z y x + G z - G x
25 24 rneqd b = y ran z b x + G z - G x = ran z y x + G z - G x
26 23 25 cbvmpov a X , b P pSyl G ran c b a + G c - G a = x X , y P pSyl G ran z y x + G z - G x
27 simpr φ k P pSyl G k P pSyl G
28 eqid u X | u a X , b P pSyl G ran c b a + G c - G a k = k = u X | u a X , b P pSyl G ran c b a + G c - G a k = k
29 eqid x X | y X x + G y k y + G x k = x X | y X x + G y k y + G x k
30 1 10 11 12 13 14 26 27 28 29 sylow3lem4 φ k P pSyl G P pSyl G X P P pCnt X
31 5 30 eqbrtrid φ k P pSyl G N X P P pCnt X
32 5 oveq1i N mod P = P pSyl G mod P
33 23 25 cbvmpov a k , b P pSyl G ran c b a + G c - G a = x k , y P pSyl G ran z y x + G z - G x
34 eqid x X | y X x + G y s y + G x s = x X | y X x + G y s y + G x s
35 1 10 11 12 13 14 27 33 34 sylow3lem6 φ k P pSyl G P pSyl G mod P = 1
36 32 35 syl5eq φ k P pSyl G N mod P = 1
37 31 36 jca φ k P pSyl G N X P P pCnt X N mod P = 1
38 9 37 exlimddv φ N X P P pCnt X N mod P = 1