Metamath Proof Explorer


Theorem sylow3

Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of | G | / d , where d is the common order of a Sylow subgroup, and is equivalent to 1 mod P . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3.n N=PpSylG
Assertion sylow3 φNXPPpCntXNmodP=1

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3.n N=PpSylG
6 1 slwn0 GGrpXFinPPpSylG
7 2 3 4 6 syl3anc φPpSylG
8 n0 PpSylGkkPpSylG
9 7 8 sylib φkkPpSylG
10 2 adantr φkPpSylGGGrp
11 3 adantr φkPpSylGXFin
12 4 adantr φkPpSylGP
13 eqid +G=+G
14 eqid -G=-G
15 oveq2 c=za+Gc=a+Gz
16 15 oveq1d c=za+Gc-Ga=a+Gz-Ga
17 16 cbvmptv cba+Gc-Ga=zba+Gz-Ga
18 oveq1 a=xa+Gz=x+Gz
19 id a=xa=x
20 18 19 oveq12d a=xa+Gz-Ga=x+Gz-Gx
21 20 mpteq2dv a=xzba+Gz-Ga=zbx+Gz-Gx
22 17 21 eqtrid a=xcba+Gc-Ga=zbx+Gz-Gx
23 22 rneqd a=xrancba+Gc-Ga=ranzbx+Gz-Gx
24 mpteq1 b=yzbx+Gz-Gx=zyx+Gz-Gx
25 24 rneqd b=yranzbx+Gz-Gx=ranzyx+Gz-Gx
26 23 25 cbvmpov aX,bPpSylGrancba+Gc-Ga=xX,yPpSylGranzyx+Gz-Gx
27 simpr φkPpSylGkPpSylG
28 eqid uX|uaX,bPpSylGrancba+Gc-Gak=k=uX|uaX,bPpSylGrancba+Gc-Gak=k
29 eqid xX|yXx+Gyky+Gxk=xX|yXx+Gyky+Gxk
30 1 10 11 12 13 14 26 27 28 29 sylow3lem4 φkPpSylGPpSylGXPPpCntX
31 5 30 eqbrtrid φkPpSylGNXPPpCntX
32 5 oveq1i NmodP=PpSylGmodP
33 23 25 cbvmpov ak,bPpSylGrancba+Gc-Ga=xk,yPpSylGranzyx+Gz-Gx
34 eqid xX|yXx+Gysy+Gxs=xX|yXx+Gysy+Gxs
35 1 10 11 12 13 14 27 33 34 sylow3lem6 φkPpSylGPpSylGmodP=1
36 32 35 eqtrid φkPpSylGNmodP=1
37 31 36 jca φkPpSylGNXPPpCntXNmodP=1
38 9 37 exlimddv φNXPPpCntXNmodP=1