Description: The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgext.s | |
|
symgext.e | |
||
Assertion | symgextfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgext.s | |
|
2 | symgext.e | |
|
3 | 1 2 | symgextf | |
4 | eqid | |
|
5 | 4 1 | symgbasf1o | |
6 | f1ofo | |
|
7 | 5 6 | syl | |
8 | 7 | adantl | |
9 | dffo3 | |
|
10 | 8 9 | sylib | |
11 | 10 | simprd | |
12 | 1 2 | symgextfv | |
13 | 12 | imp | |
14 | 13 | eqeq2d | |
15 | 14 | rexbidva | |
16 | 15 | ralbidv | |
17 | 11 16 | mpbird | |
18 | difssd | |
|
19 | ssrexv | |
|
20 | 18 19 | syl | |
21 | 20 | ralimia | |
22 | 17 21 | syl | |
23 | simpl | |
|
24 | 1 2 | symgextfve | |
25 | 24 | adantr | |
26 | 25 | imp | |
27 | 26 | eqcomd | |
28 | 23 27 | rspcedeq2vd | |
29 | eqeq1 | |
|
30 | 29 | rexbidv | |
31 | 30 | ralunsn | |
32 | 31 | adantr | |
33 | 22 28 32 | mpbir2and | |
34 | difsnid | |
|
35 | 34 | eqcomd | |
36 | 35 | raleqdv | |
37 | 36 | adantr | |
38 | 33 37 | mpbird | |
39 | dffo3 | |
|
40 | 3 38 39 | sylanbrc | |