Metamath Proof Explorer


Theorem tendo0tp

Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendo0.b B=BaseK
tendo0.h H=LHypK
tendo0.t T=LTrnKW
tendo0.e E=TEndoKW
tendo0.o O=fTIB
tendo0tp.l ˙=K
tendo0tp.r R=trLKW
Assertion tendo0tp KHLWHFTROF˙RF

Proof

Step Hyp Ref Expression
1 tendo0.b B=BaseK
2 tendo0.h H=LHypK
3 tendo0.t T=LTrnKW
4 tendo0.e E=TEndoKW
5 tendo0.o O=fTIB
6 tendo0tp.l ˙=K
7 tendo0tp.r R=trLKW
8 5 1 tendo02 FTOF=IB
9 8 adantl KHLWHFTOF=IB
10 9 fveq2d KHLWHFTROF=RIB
11 eqid 0.K=0.K
12 1 11 2 7 trlid0 KHLWHRIB=0.K
13 12 adantr KHLWHFTRIB=0.K
14 10 13 eqtrd KHLWHFTROF=0.K
15 hlop KHLKOP
16 15 ad2antrr KHLWHFTKOP
17 1 2 3 7 trlcl KHLWHFTRFB
18 1 6 11 op0le KOPRFB0.K˙RF
19 16 17 18 syl2anc KHLWHFT0.K˙RF
20 14 19 eqbrtrd KHLWHFTROF˙RF