Metamath Proof Explorer


Theorem tendo0tp

Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendo0.b B = Base K
tendo0.h H = LHyp K
tendo0.t T = LTrn K W
tendo0.e E = TEndo K W
tendo0.o O = f T I B
tendo0tp.l ˙ = K
tendo0tp.r R = trL K W
Assertion tendo0tp K HL W H F T R O F ˙ R F

Proof

Step Hyp Ref Expression
1 tendo0.b B = Base K
2 tendo0.h H = LHyp K
3 tendo0.t T = LTrn K W
4 tendo0.e E = TEndo K W
5 tendo0.o O = f T I B
6 tendo0tp.l ˙ = K
7 tendo0tp.r R = trL K W
8 5 1 tendo02 F T O F = I B
9 8 adantl K HL W H F T O F = I B
10 9 fveq2d K HL W H F T R O F = R I B
11 eqid 0. K = 0. K
12 1 11 2 7 trlid0 K HL W H R I B = 0. K
13 12 adantr K HL W H F T R I B = 0. K
14 10 13 eqtrd K HL W H F T R O F = 0. K
15 hlop K HL K OP
16 15 ad2antrr K HL W H F T K OP
17 1 2 3 7 trlcl K HL W H F T R F B
18 1 6 11 op0le K OP R F B 0. K ˙ R F
19 16 17 18 syl2anc K HL W H F T 0. K ˙ R F
20 14 19 eqbrtrd K HL W H F T R O F ˙ R F