Metamath Proof Explorer


Theorem tendovalco

Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h H=LHypK
tendof.t T=LTrnKW
tendof.e E=TEndoKW
Assertion tendovalco KVWHSEFTGTSFG=SFSG

Proof

Step Hyp Ref Expression
1 tendof.h H=LHypK
2 tendof.t T=LTrnKW
3 tendof.e E=TEndoKW
4 eqid K=K
5 eqid trLKW=trLKW
6 4 1 2 5 3 istendo KVWHSES:TTfTgTSfg=SfSgfTtrLKWSfKtrLKWf
7 coeq1 f=Ffg=Fg
8 7 fveq2d f=FSfg=SFg
9 fveq2 f=FSf=SF
10 9 coeq1d f=FSfSg=SFSg
11 8 10 eqeq12d f=FSfg=SfSgSFg=SFSg
12 coeq2 g=GFg=FG
13 12 fveq2d g=GSFg=SFG
14 fveq2 g=GSg=SG
15 14 coeq2d g=GSFSg=SFSG
16 13 15 eqeq12d g=GSFg=SFSgSFG=SFSG
17 11 16 rspc2v FTGTfTgTSfg=SfSgSFG=SFSG
18 17 com12 fTgTSfg=SfSgFTGTSFG=SFSG
19 18 3ad2ant2 S:TTfTgTSfg=SfSgfTtrLKWSfKtrLKWfFTGTSFG=SFSG
20 6 19 syl6bi KVWHSEFTGTSFG=SFSG
21 20 3impia KVWHSEFTGTSFG=SFSG
22 21 imp KVWHSEFTGTSFG=SFSG