Metamath Proof Explorer


Theorem tgcgrsub2

Description: Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legid.a φAP
legid.b φBP
legtrd.c φCP
legtrd.d φDP
tgcgrsub2.d φDP
tgcgrsub2.e φEP
tgcgrsub2.f φFP
tgcgrsub2.1 φBAICCAIB
tgcgrsub2.2 φEDIFFDIE
tgcgrsub2.3 φA-˙B=D-˙E
tgcgrsub2.4 φA-˙C=D-˙F
Assertion tgcgrsub2 φB-˙C=E-˙F

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legid.a φAP
7 legid.b φBP
8 legtrd.c φCP
9 legtrd.d φDP
10 tgcgrsub2.d φDP
11 tgcgrsub2.e φEP
12 tgcgrsub2.f φFP
13 tgcgrsub2.1 φBAICCAIB
14 tgcgrsub2.2 φEDIFFDIE
15 tgcgrsub2.3 φA-˙B=D-˙E
16 tgcgrsub2.4 φA-˙C=D-˙F
17 5 adantr φBAICG𝒢Tarski
18 8 adantr φBAICCP
19 7 adantr φBAICBP
20 12 adantr φBAICFP
21 11 adantr φBAICEP
22 6 adantr φBAICAP
23 9 adantr φBAICDP
24 simpr φBAICBAIC
25 1 2 3 17 22 19 18 24 tgbtwncom φBAICBCIA
26 14 adantr φBAICEDIFFDIE
27 1 2 3 4 17 22 19 18 24 btwnleg φBAICA-˙B˙A-˙C
28 15 adantr φBAICA-˙B=D-˙E
29 16 adantr φBAICA-˙C=D-˙F
30 27 28 29 3brtr3d φBAICD-˙E˙D-˙F
31 1 2 3 4 17 21 20 23 23 26 30 legbtwn φBAICEDIF
32 1 2 3 17 23 21 20 31 tgbtwncom φBAICEFID
33 1 2 3 5 6 8 9 12 16 tgcgrcomlr φC-˙A=F-˙D
34 33 adantr φBAICC-˙A=F-˙D
35 1 2 3 5 6 7 9 11 15 tgcgrcomlr φB-˙A=E-˙D
36 35 adantr φBAICB-˙A=E-˙D
37 1 2 3 17 18 19 22 20 21 23 25 32 34 36 tgcgrsub φBAICC-˙B=F-˙E
38 1 2 3 17 18 19 20 21 37 tgcgrcomlr φBAICB-˙C=E-˙F
39 5 adantr φCAIBG𝒢Tarski
40 7 adantr φCAIBBP
41 8 adantr φCAIBCP
42 6 adantr φCAIBAP
43 11 adantr φCAIBEP
44 12 adantr φCAIBFP
45 9 adantr φCAIBDP
46 simpr φCAIBCAIB
47 1 2 3 39 42 41 40 46 tgbtwncom φCAIBCBIA
48 14 orcomd φFDIEEDIF
49 48 adantr φCAIBFDIEEDIF
50 1 2 3 4 39 42 41 40 46 btwnleg φCAIBA-˙C˙A-˙B
51 16 adantr φCAIBA-˙C=D-˙F
52 15 adantr φCAIBA-˙B=D-˙E
53 50 51 52 3brtr3d φCAIBD-˙F˙D-˙E
54 1 2 3 4 39 44 43 45 45 49 53 legbtwn φCAIBFDIE
55 1 2 3 39 45 44 43 54 tgbtwncom φCAIBFEID
56 35 adantr φCAIBB-˙A=E-˙D
57 33 adantr φCAIBC-˙A=F-˙D
58 1 2 3 39 40 41 42 43 44 45 47 55 56 57 tgcgrsub φCAIBB-˙C=E-˙F
59 38 58 13 mpjaodan φB-˙C=E-˙F