Metamath Proof Explorer


Theorem tgcn

Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses tgcn.1 φJTopOnX
tgcn.3 φK=topGenB
tgcn.4 φKTopOnY
Assertion tgcn φFJCnKF:XYyBF-1yJ

Proof

Step Hyp Ref Expression
1 tgcn.1 φJTopOnX
2 tgcn.3 φK=topGenB
3 tgcn.4 φKTopOnY
4 iscn JTopOnXKTopOnYFJCnKF:XYyKF-1yJ
5 1 3 4 syl2anc φFJCnKF:XYyKF-1yJ
6 topontop KTopOnYKTop
7 3 6 syl φKTop
8 2 7 eqeltrrd φtopGenBTop
9 tgclb BTopBasestopGenBTop
10 8 9 sylibr φBTopBases
11 bastg BTopBasesBtopGenB
12 10 11 syl φBtopGenB
13 12 2 sseqtrrd φBK
14 ssralv BKyKF-1yJyBF-1yJ
15 13 14 syl φyKF-1yJyBF-1yJ
16 2 eleq2d φxKxtopGenB
17 eltg3 BTopBasesxtopGenBzzBx=z
18 10 17 syl φxtopGenBzzBx=z
19 16 18 bitrd φxKzzBx=z
20 ssralv zByBF-1yJyzF-1yJ
21 topontop JTopOnXJTop
22 1 21 syl φJTop
23 iunopn JTopyzF-1yJyzF-1yJ
24 23 ex JTopyzF-1yJyzF-1yJ
25 22 24 syl φyzF-1yJyzF-1yJ
26 20 25 sylan9r φzByBF-1yJyzF-1yJ
27 imaeq2 x=zF-1x=F-1z
28 imauni F-1z=yzF-1y
29 27 28 eqtrdi x=zF-1x=yzF-1y
30 29 eleq1d x=zF-1xJyzF-1yJ
31 30 imbi2d x=zyBF-1yJF-1xJyBF-1yJyzF-1yJ
32 26 31 syl5ibrcom φzBx=zyBF-1yJF-1xJ
33 32 expimpd φzBx=zyBF-1yJF-1xJ
34 33 exlimdv φzzBx=zyBF-1yJF-1xJ
35 19 34 sylbid φxKyBF-1yJF-1xJ
36 35 imp φxKyBF-1yJF-1xJ
37 36 ralrimdva φyBF-1yJxKF-1xJ
38 imaeq2 x=yF-1x=F-1y
39 38 eleq1d x=yF-1xJF-1yJ
40 39 cbvralvw xKF-1xJyKF-1yJ
41 37 40 imbitrdi φyBF-1yJyKF-1yJ
42 15 41 impbid φyKF-1yJyBF-1yJ
43 42 anbi2d φF:XYyKF-1yJF:XYyBF-1yJ
44 5 43 bitrd φFJCnKF:XYyBF-1yJ