Metamath Proof Explorer


Theorem tgplacthmeo

Description: The left group action of element A in a topological group G is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgplacthmeo.1 F=xXA+˙x
tgplacthmeo.2 X=BaseG
tgplacthmeo.3 +˙=+G
tgplacthmeo.4 J=TopOpenG
Assertion tgplacthmeo GTopGrpAXFJHomeoJ

Proof

Step Hyp Ref Expression
1 tgplacthmeo.1 F=xXA+˙x
2 tgplacthmeo.2 X=BaseG
3 tgplacthmeo.3 +˙=+G
4 tgplacthmeo.4 J=TopOpenG
5 tgptmd GTopGrpGTopMnd
6 1 2 3 4 tmdlactcn GTopMndAXFJCnJ
7 5 6 sylan GTopGrpAXFJCnJ
8 tgpgrp GTopGrpGGrp
9 eqid gXxXg+˙x=gXxXg+˙x
10 eqid invgG=invgG
11 9 2 3 10 grplactcnv GGrpAXgXxXg+˙xA:X1-1 ontoXgXxXg+˙xA-1=gXxXg+˙xinvgGA
12 8 11 sylan GTopGrpAXgXxXg+˙xA:X1-1 ontoXgXxXg+˙xA-1=gXxXg+˙xinvgGA
13 12 simprd GTopGrpAXgXxXg+˙xA-1=gXxXg+˙xinvgGA
14 9 2 grplactfval AXgXxXg+˙xA=xXA+˙x
15 14 adantl GTopGrpAXgXxXg+˙xA=xXA+˙x
16 15 1 eqtr4di GTopGrpAXgXxXg+˙xA=F
17 16 cnveqd GTopGrpAXgXxXg+˙xA-1=F-1
18 2 10 grpinvcl GGrpAXinvgGAX
19 8 18 sylan GTopGrpAXinvgGAX
20 9 2 grplactfval invgGAXgXxXg+˙xinvgGA=xXinvgGA+˙x
21 19 20 syl GTopGrpAXgXxXg+˙xinvgGA=xXinvgGA+˙x
22 13 17 21 3eqtr3d GTopGrpAXF-1=xXinvgGA+˙x
23 eqid xXinvgGA+˙x=xXinvgGA+˙x
24 23 2 3 4 tmdlactcn GTopMndinvgGAXxXinvgGA+˙xJCnJ
25 5 19 24 syl2an2r GTopGrpAXxXinvgGA+˙xJCnJ
26 22 25 eqeltrd GTopGrpAXF-1JCnJ
27 ishmeo FJHomeoJFJCnJF-1JCnJ
28 7 26 27 sylanbrc GTopGrpAXFJHomeoJ