Description: The left group action of element A in a topological group G is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgplacthmeo.1 | |
|
tgplacthmeo.2 | |
||
tgplacthmeo.3 | |
||
tgplacthmeo.4 | |
||
Assertion | tgplacthmeo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgplacthmeo.1 | |
|
2 | tgplacthmeo.2 | |
|
3 | tgplacthmeo.3 | |
|
4 | tgplacthmeo.4 | |
|
5 | tgptmd | |
|
6 | 1 2 3 4 | tmdlactcn | |
7 | 5 6 | sylan | |
8 | tgpgrp | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 9 2 3 10 | grplactcnv | |
12 | 8 11 | sylan | |
13 | 12 | simprd | |
14 | 9 2 | grplactfval | |
15 | 14 | adantl | |
16 | 15 1 | eqtr4di | |
17 | 16 | cnveqd | |
18 | 2 10 | grpinvcl | |
19 | 8 18 | sylan | |
20 | 9 2 | grplactfval | |
21 | 19 20 | syl | |
22 | 13 17 21 | 3eqtr3d | |
23 | eqid | |
|
24 | 23 2 3 4 | tmdlactcn | |
25 | 5 19 24 | syl2an2r | |
26 | 22 25 | eqeltrd | |
27 | ishmeo | |
|
28 | 7 26 27 | sylanbrc | |