Metamath Proof Explorer


Theorem trljco2

Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013)

Ref Expression
Hypotheses trljco.j ˙=joinK
trljco.h H=LHypK
trljco.t T=LTrnKW
trljco.r R=trLKW
Assertion trljco2 KHLWHFTGTRF˙RFG=RG˙RFG

Proof

Step Hyp Ref Expression
1 trljco.j ˙=joinK
2 trljco.h H=LHypK
3 trljco.t T=LTrnKW
4 trljco.r R=trLKW
5 simp1l KHLWHFTGTKHL
6 5 hllatd KHLWHFTGTKLat
7 eqid BaseK=BaseK
8 7 2 3 4 trlcl KHLWHFTRFBaseK
9 8 3adant3 KHLWHFTGTRFBaseK
10 7 2 3 4 trlcl KHLWHGTRGBaseK
11 10 3adant2 KHLWHFTGTRGBaseK
12 7 1 latjcom KLatRFBaseKRGBaseKRF˙RG=RG˙RF
13 6 9 11 12 syl3anc KHLWHFTGTRF˙RG=RG˙RF
14 1 2 3 4 trljco KHLWHGTFTRG˙RGF=RG˙RF
15 14 3com23 KHLWHFTGTRG˙RGF=RG˙RF
16 13 15 eqtr4d KHLWHFTGTRF˙RG=RG˙RGF
17 1 2 3 4 trljco KHLWHFTGTRF˙RFG=RF˙RG
18 2 3 ltrncom KHLWHFTGTFG=GF
19 18 fveq2d KHLWHFTGTRFG=RGF
20 19 oveq2d KHLWHFTGTRG˙RFG=RG˙RGF
21 16 17 20 3eqtr4d KHLWHFTGTRF˙RFG=RG˙RFG