Metamath Proof Explorer


Theorem trlle

Description: The trace of a lattice translation is less than the fiducial co-atom W . (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses trlle.l ˙=K
trlle.h H=LHypK
trlle.t T=LTrnKW
trlle.r R=trLKW
Assertion trlle KHLWHFTRF˙W

Proof

Step Hyp Ref Expression
1 trlle.l ˙=K
2 trlle.h H=LHypK
3 trlle.t T=LTrnKW
4 trlle.r R=trLKW
5 eqid ocK=ocK
6 eqid AtomsK=AtomsK
7 1 5 6 2 lhpocnel KHLWHocKWAtomsK¬ocKW˙W
8 7 adantr KHLWHFTocKWAtomsK¬ocKW˙W
9 eqid joinK=joinK
10 eqid meetK=meetK
11 1 9 10 6 2 3 4 trlval2 KHLWHFTocKWAtomsK¬ocKW˙WRF=ocKWjoinKFocKWmeetKW
12 8 11 mpd3an3 KHLWHFTRF=ocKWjoinKFocKWmeetKW
13 hllat KHLKLat
14 13 ad2antrr KHLWHFTKLat
15 hlop KHLKOP
16 15 ad2antrr KHLWHFTKOP
17 eqid BaseK=BaseK
18 17 2 lhpbase WHWBaseK
19 18 ad2antlr KHLWHFTWBaseK
20 17 5 opoccl KOPWBaseKocKWBaseK
21 16 19 20 syl2anc KHLWHFTocKWBaseK
22 17 2 3 ltrncl KHLWHFTocKWBaseKFocKWBaseK
23 21 22 mpd3an3 KHLWHFTFocKWBaseK
24 17 9 latjcl KLatocKWBaseKFocKWBaseKocKWjoinKFocKWBaseK
25 14 21 23 24 syl3anc KHLWHFTocKWjoinKFocKWBaseK
26 17 1 10 latmle2 KLatocKWjoinKFocKWBaseKWBaseKocKWjoinKFocKWmeetKW˙W
27 14 25 19 26 syl3anc KHLWHFTocKWjoinKFocKWmeetKW˙W
28 12 27 eqbrtrd KHLWHFTRF˙W