Description: Formerly part of proof of eupth2lem3 : If a trail in a graph G induces a subgraph Z with the vertices V of G and the edges being the edges of the walk, and a subgraph X with the vertices V of G and the edges being the edges of the walk except the last one, and a subgraph Y with the vertices V of G and one edges being the last edge of the walk, then the vertex degree of any vertex U of G within Z is the sum of the vertex degree of U within X and the vertex degree of U within Y . Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trlsegvdeg.v | |
|
trlsegvdeg.i | |
||
trlsegvdeg.f | |
||
trlsegvdeg.n | |
||
trlsegvdeg.u | |
||
trlsegvdeg.w | |
||
trlsegvdeg.vx | |
||
trlsegvdeg.vy | |
||
trlsegvdeg.vz | |
||
trlsegvdeg.ix | |
||
trlsegvdeg.iy | |
||
trlsegvdeg.iz | |
||
Assertion | trlsegvdeg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.v | |
|
2 | trlsegvdeg.i | |
|
3 | trlsegvdeg.f | |
|
4 | trlsegvdeg.n | |
|
5 | trlsegvdeg.u | |
|
6 | trlsegvdeg.w | |
|
7 | trlsegvdeg.vx | |
|
8 | trlsegvdeg.vy | |
|
9 | trlsegvdeg.vz | |
|
10 | trlsegvdeg.ix | |
|
11 | trlsegvdeg.iy | |
|
12 | trlsegvdeg.iz | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 8 7 | eqtr4d | |
17 | 9 7 | eqtr4d | |
18 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem4 | |
19 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem5 | |
20 | 18 19 | ineq12d | |
21 | fzonel | |
|
22 | 2 | trlf1 | |
23 | 6 22 | syl | |
24 | elfzouz2 | |
|
25 | fzoss2 | |
|
26 | 4 24 25 | 3syl | |
27 | f1elima | |
|
28 | 23 4 26 27 | syl3anc | |
29 | 21 28 | mtbiri | |
30 | 29 | orcd | |
31 | ianor | |
|
32 | elin | |
|
33 | 31 32 | xchnxbir | |
34 | 30 33 | sylibr | |
35 | disjsn | |
|
36 | 34 35 | sylibr | |
37 | 20 36 | eqtrd | |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem2 | |
39 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem3 | |
40 | 5 7 | eleqtrrd | |
41 | f1f | |
|
42 | 6 22 41 | 3syl | |
43 | 3 42 4 | resunimafz0 | |
44 | 10 11 | uneq12d | |
45 | 43 12 44 | 3eqtr4d | |
46 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem6 | |
47 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem7 | |
48 | 13 14 15 16 17 37 38 39 40 45 46 47 | vtxdfiun | |