Metamath Proof Explorer


Theorem trlsegvdeg

Description: Formerly part of proof of eupth2lem3 : If a trail in a graph G induces a subgraph Z with the vertices V of G and the edges being the edges of the walk, and a subgraph X with the vertices V of G and the edges being the edges of the walk except the last one, and a subgraph Y with the vertices V of G and one edges being the last edge of the walk, then the vertex degree of any vertex U of G within Z is the sum of the vertex degree of U within X and the vertex degree of U within Y . Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V = Vtx G
trlsegvdeg.i I = iEdg G
trlsegvdeg.f φ Fun I
trlsegvdeg.n φ N 0 ..^ F
trlsegvdeg.u φ U V
trlsegvdeg.w φ F Trails G P
trlsegvdeg.vx φ Vtx X = V
trlsegvdeg.vy φ Vtx Y = V
trlsegvdeg.vz φ Vtx Z = V
trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
trlsegvdeg.iy φ iEdg Y = F N I F N
trlsegvdeg.iz φ iEdg Z = I F 0 N
Assertion trlsegvdeg φ VtxDeg Z U = VtxDeg X U + VtxDeg Y U

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V = Vtx G
2 trlsegvdeg.i I = iEdg G
3 trlsegvdeg.f φ Fun I
4 trlsegvdeg.n φ N 0 ..^ F
5 trlsegvdeg.u φ U V
6 trlsegvdeg.w φ F Trails G P
7 trlsegvdeg.vx φ Vtx X = V
8 trlsegvdeg.vy φ Vtx Y = V
9 trlsegvdeg.vz φ Vtx Z = V
10 trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
11 trlsegvdeg.iy φ iEdg Y = F N I F N
12 trlsegvdeg.iz φ iEdg Z = I F 0 N
13 eqid iEdg X = iEdg X
14 eqid iEdg Y = iEdg Y
15 eqid Vtx X = Vtx X
16 8 7 eqtr4d φ Vtx Y = Vtx X
17 9 7 eqtr4d φ Vtx Z = Vtx X
18 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem4 φ dom iEdg X = F 0 ..^ N dom I
19 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem5 φ dom iEdg Y = F N
20 18 19 ineq12d φ dom iEdg X dom iEdg Y = F 0 ..^ N dom I F N
21 fzonel ¬ N 0 ..^ N
22 2 trlf1 F Trails G P F : 0 ..^ F 1-1 dom I
23 6 22 syl φ F : 0 ..^ F 1-1 dom I
24 elfzouz2 N 0 ..^ F F N
25 fzoss2 F N 0 ..^ N 0 ..^ F
26 4 24 25 3syl φ 0 ..^ N 0 ..^ F
27 f1elima F : 0 ..^ F 1-1 dom I N 0 ..^ F 0 ..^ N 0 ..^ F F N F 0 ..^ N N 0 ..^ N
28 23 4 26 27 syl3anc φ F N F 0 ..^ N N 0 ..^ N
29 21 28 mtbiri φ ¬ F N F 0 ..^ N
30 29 orcd φ ¬ F N F 0 ..^ N ¬ F N dom I
31 ianor ¬ F N F 0 ..^ N F N dom I ¬ F N F 0 ..^ N ¬ F N dom I
32 elin F N F 0 ..^ N dom I F N F 0 ..^ N F N dom I
33 31 32 xchnxbir ¬ F N F 0 ..^ N dom I ¬ F N F 0 ..^ N ¬ F N dom I
34 30 33 sylibr φ ¬ F N F 0 ..^ N dom I
35 disjsn F 0 ..^ N dom I F N = ¬ F N F 0 ..^ N dom I
36 34 35 sylibr φ F 0 ..^ N dom I F N =
37 20 36 eqtrd φ dom iEdg X dom iEdg Y =
38 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem2 φ Fun iEdg X
39 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem3 φ Fun iEdg Y
40 5 7 eleqtrrd φ U Vtx X
41 f1f F : 0 ..^ F 1-1 dom I F : 0 ..^ F dom I
42 6 22 41 3syl φ F : 0 ..^ F dom I
43 3 42 4 resunimafz0 φ I F 0 N = I F 0 ..^ N F N I F N
44 10 11 uneq12d φ iEdg X iEdg Y = I F 0 ..^ N F N I F N
45 43 12 44 3eqtr4d φ iEdg Z = iEdg X iEdg Y
46 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem6 φ dom iEdg X Fin
47 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem7 φ dom iEdg Y Fin
48 13 14 15 16 17 37 38 39 40 45 46 47 vtxdfiun φ VtxDeg Z U = VtxDeg X U + VtxDeg Y U