Metamath Proof Explorer


Theorem trlsegvdeg

Description: Formerly part of proof of eupth2lem3 : If a trail in a graph G induces a subgraph Z with the vertices V of G and the edges being the edges of the walk, and a subgraph X with the vertices V of G and the edges being the edges of the walk except the last one, and a subgraph Y with the vertices V of G and one edges being the last edge of the walk, then the vertex degree of any vertex U of G within Z is the sum of the vertex degree of U within X and the vertex degree of U within Y . Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
trlsegvdeg.vx φVtxX=V
trlsegvdeg.vy φVtxY=V
trlsegvdeg.vz φVtxZ=V
trlsegvdeg.ix φiEdgX=IF0..^N
trlsegvdeg.iy φiEdgY=FNIFN
trlsegvdeg.iz φiEdgZ=IF0N
Assertion trlsegvdeg φVtxDegZU=VtxDegXU+VtxDegYU

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trlsegvdeg.vx φVtxX=V
8 trlsegvdeg.vy φVtxY=V
9 trlsegvdeg.vz φVtxZ=V
10 trlsegvdeg.ix φiEdgX=IF0..^N
11 trlsegvdeg.iy φiEdgY=FNIFN
12 trlsegvdeg.iz φiEdgZ=IF0N
13 eqid iEdgX=iEdgX
14 eqid iEdgY=iEdgY
15 eqid VtxX=VtxX
16 8 7 eqtr4d φVtxY=VtxX
17 9 7 eqtr4d φVtxZ=VtxX
18 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem4 φdomiEdgX=F0..^NdomI
19 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem5 φdomiEdgY=FN
20 18 19 ineq12d φdomiEdgXdomiEdgY=F0..^NdomIFN
21 fzonel ¬N0..^N
22 2 trlf1 FTrailsGPF:0..^F1-1domI
23 6 22 syl φF:0..^F1-1domI
24 elfzouz2 N0..^FFN
25 fzoss2 FN0..^N0..^F
26 4 24 25 3syl φ0..^N0..^F
27 f1elima F:0..^F1-1domIN0..^F0..^N0..^FFNF0..^NN0..^N
28 23 4 26 27 syl3anc φFNF0..^NN0..^N
29 21 28 mtbiri φ¬FNF0..^N
30 29 orcd φ¬FNF0..^N¬FNdomI
31 ianor ¬FNF0..^NFNdomI¬FNF0..^N¬FNdomI
32 elin FNF0..^NdomIFNF0..^NFNdomI
33 31 32 xchnxbir ¬FNF0..^NdomI¬FNF0..^N¬FNdomI
34 30 33 sylibr φ¬FNF0..^NdomI
35 disjsn F0..^NdomIFN=¬FNF0..^NdomI
36 34 35 sylibr φF0..^NdomIFN=
37 20 36 eqtrd φdomiEdgXdomiEdgY=
38 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem2 φFuniEdgX
39 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem3 φFuniEdgY
40 5 7 eleqtrrd φUVtxX
41 f1f F:0..^F1-1domIF:0..^FdomI
42 6 22 41 3syl φF:0..^FdomI
43 3 42 4 resunimafz0 φIF0N=IF0..^NFNIFN
44 10 11 uneq12d φiEdgXiEdgY=IF0..^NFNIFN
45 43 12 44 3eqtr4d φiEdgZ=iEdgXiEdgY
46 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem6 φdomiEdgXFin
47 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem7 φdomiEdgYFin
48 13 14 15 16 17 37 38 39 40 45 46 47 vtxdfiun φVtxDegZU=VtxDegXU+VtxDegYU