Metamath Proof Explorer


Theorem tsmspropd

Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmspropd.f φ F V
tsmspropd.g φ G W
tsmspropd.h φ H X
tsmspropd.b φ Base G = Base H
tsmspropd.p φ + G = + H
tsmspropd.j φ TopOpen G = TopOpen H
Assertion tsmspropd φ G tsums F = H tsums F

Proof

Step Hyp Ref Expression
1 tsmspropd.f φ F V
2 tsmspropd.g φ G W
3 tsmspropd.h φ H X
4 tsmspropd.b φ Base G = Base H
5 tsmspropd.p φ + G = + H
6 tsmspropd.j φ TopOpen G = TopOpen H
7 6 oveq1d φ TopOpen G fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y = TopOpen H fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y
8 resexg F V F y V
9 1 8 syl φ F y V
10 9 2 3 4 5 gsumpropd φ G F y = H F y
11 10 mpteq2dv φ y 𝒫 dom F Fin G F y = y 𝒫 dom F Fin H F y
12 7 11 fveq12d φ TopOpen G fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin G F y = TopOpen H fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin H F y
13 eqid Base G = Base G
14 eqid TopOpen G = TopOpen G
15 eqid 𝒫 dom F Fin = 𝒫 dom F Fin
16 eqid ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y = ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y
17 eqidd φ dom F = dom F
18 13 14 15 16 2 1 17 tsmsval2 φ G tsums F = TopOpen G fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin G F y
19 eqid Base H = Base H
20 eqid TopOpen H = TopOpen H
21 19 20 15 16 3 1 17 tsmsval2 φ H tsums F = TopOpen H fLimf 𝒫 dom F Fin filGen ran z 𝒫 dom F Fin y 𝒫 dom F Fin | z y y 𝒫 dom F Fin H F y
22 12 18 21 3eqtr4d φ G tsums F = H tsums F