Metamath Proof Explorer


Theorem ttukeylem1

Description: Lemma for ttukey . Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φF:cardAB1-1 ontoAB
ttukeylem.2 φBA
ttukeylem.3 φxxA𝒫xFinA
Assertion ttukeylem1 φCA𝒫CFinA

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φF:cardAB1-1 ontoAB
2 ttukeylem.2 φBA
3 ttukeylem.3 φxxA𝒫xFinA
4 elex CACV
5 4 a1i φCACV
6 id 𝒫CFinA𝒫CFinA
7 ssun1 AAB
8 undif1 ABB=AB
9 7 8 sseqtrri AABB
10 fvex cardABV
11 f1ofo F:cardAB1-1 ontoABF:cardABontoAB
12 1 11 syl φF:cardABontoAB
13 focdmex cardABVF:cardABontoABABV
14 10 12 13 mpsyl φABV
15 unexg ABVBAABBV
16 14 2 15 syl2anc φABBV
17 ssexg AABBABBVAV
18 9 16 17 sylancr φAV
19 uniexb AVAV
20 18 19 sylibr φAV
21 ssexg 𝒫CFinAAV𝒫CFinV
22 6 20 21 syl2anr φ𝒫CFinA𝒫CFinV
23 infpwfidom 𝒫CFinVC𝒫CFin
24 reldom Rel
25 24 brrelex1i C𝒫CFinCV
26 22 23 25 3syl φ𝒫CFinACV
27 26 ex φ𝒫CFinACV
28 eleq1 x=CxACA
29 pweq x=C𝒫x=𝒫C
30 29 ineq1d x=C𝒫xFin=𝒫CFin
31 30 sseq1d x=C𝒫xFinA𝒫CFinA
32 28 31 bibi12d x=CxA𝒫xFinACA𝒫CFinA
33 32 spcgv CVxxA𝒫xFinACA𝒫CFinA
34 3 33 syl5com φCVCA𝒫CFinA
35 5 27 34 pm5.21ndd φCA𝒫CFinA