Description: Lemma for ttukey . Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ttukeylem.1 | |
|
ttukeylem.2 | |
||
ttukeylem.3 | |
||
Assertion | ttukeylem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttukeylem.1 | |
|
2 | ttukeylem.2 | |
|
3 | ttukeylem.3 | |
|
4 | elex | |
|
5 | 4 | a1i | |
6 | id | |
|
7 | ssun1 | |
|
8 | undif1 | |
|
9 | 7 8 | sseqtrri | |
10 | fvex | |
|
11 | f1ofo | |
|
12 | 1 11 | syl | |
13 | focdmex | |
|
14 | 10 12 13 | mpsyl | |
15 | unexg | |
|
16 | 14 2 15 | syl2anc | |
17 | ssexg | |
|
18 | 9 16 17 | sylancr | |
19 | uniexb | |
|
20 | 18 19 | sylibr | |
21 | ssexg | |
|
22 | 6 20 21 | syl2anr | |
23 | infpwfidom | |
|
24 | reldom | |
|
25 | 24 | brrelex1i | |
26 | 22 23 25 | 3syl | |
27 | 26 | ex | |
28 | eleq1 | |
|
29 | pweq | |
|
30 | 29 | ineq1d | |
31 | 30 | sseq1d | |
32 | 28 31 | bibi12d | |
33 | 32 | spcgv | |
34 | 3 33 | syl5com | |
35 | 5 27 34 | pm5.21ndd | |