Metamath Proof Explorer


Theorem ulmres

Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses ulmres.z Z=M
ulmres.w W=N
ulmres.m φNZ
ulmres.f φF:ZS
Assertion ulmres φFuSGFWuSG

Proof

Step Hyp Ref Expression
1 ulmres.z Z=M
2 ulmres.w W=N
3 ulmres.m φNZ
4 ulmres.f φF:ZS
5 ulmscl FuSGSV
6 ulmcl FuSGG:S
7 5 6 jca FuSGSVG:S
8 7 a1i φFuSGSVG:S
9 ulmscl FWuSGSV
10 ulmcl FWuSGG:S
11 9 10 jca FWuSGSVG:S
12 11 a1i φFWuSGSVG:S
13 3 1 eleqtrdi φNM
14 13 adantr φSVG:SNM
15 eluzel2 NMM
16 14 15 syl φSVG:SM
17 1 rexuz3 MjZkjzSFkzGz<rjkjzSFkzGz<r
18 16 17 syl φSVG:SjZkjzSFkzGz<rjkjzSFkzGz<r
19 eluzelz NMN
20 14 19 syl φSVG:SN
21 2 rexuz3 NjWkjzSFkzGz<rjkjzSFkzGz<r
22 20 21 syl φSVG:SjWkjzSFkzGz<rjkjzSFkzGz<r
23 18 22 bitr4d φSVG:SjZkjzSFkzGz<rjWkjzSFkzGz<r
24 23 ralbidv φSVG:Sr+jZkjzSFkzGz<rr+jWkjzSFkzGz<r
25 4 adantr φSVG:SF:ZS
26 eqidd φSVG:SkZzSFkz=Fkz
27 eqidd φSVG:SzSGz=Gz
28 simprr φSVG:SG:S
29 simprl φSVG:SSV
30 1 16 25 26 27 28 29 ulm2 φSVG:SFuSGr+jZkjzSFkzGz<r
31 uzss NMNM
32 14 31 syl φSVG:SNM
33 32 2 1 3sstr4g φSVG:SWZ
34 25 33 fssresd φSVG:SFW:WS
35 fvres kWFWk=Fk
36 35 ad2antrl φSVG:SkWzSFWk=Fk
37 36 fveq1d φSVG:SkWzSFWkz=Fkz
38 2 20 34 37 27 28 29 ulm2 φSVG:SFWuSGr+jWkjzSFkzGz<r
39 24 30 38 3bitr4d φSVG:SFuSGFWuSG
40 39 ex φSVG:SFuSGFWuSG
41 8 12 40 pm5.21ndd φFuSGFWuSG