| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmshft.z |
|
| 2 |
|
ulmshft.w |
|
| 3 |
|
ulmshft.m |
|
| 4 |
|
ulmshft.k |
|
| 5 |
|
ulmshft.f |
|
| 6 |
|
ulmshft.h |
|
| 7 |
3
|
ad2antrr |
|
| 8 |
5
|
ad2antrr |
|
| 9 |
|
eqidd |
|
| 10 |
|
eqidd |
|
| 11 |
|
simplr |
|
| 12 |
|
simpr |
|
| 13 |
1 7 8 9 10 11 12
|
ulmi |
|
| 14 |
|
simpr |
|
| 15 |
14 1
|
eleqtrdi |
|
| 16 |
4
|
ad3antrrr |
|
| 17 |
|
eluzadd |
|
| 18 |
15 16 17
|
syl2anc |
|
| 19 |
18 2
|
eleqtrrdi |
|
| 20 |
|
eluzelz |
|
| 21 |
15 20
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
4
|
adantr |
|
| 24 |
23
|
ad3antrrr |
|
| 25 |
|
simpr |
|
| 26 |
|
eluzsub |
|
| 27 |
22 24 25 26
|
syl3anc |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
fveq1d |
|
| 30 |
29
|
fvoveq1d |
|
| 31 |
30
|
breq1d |
|
| 32 |
31
|
ralbidv |
|
| 33 |
32
|
rspcv |
|
| 34 |
27 33
|
syl |
|
| 35 |
34
|
ralrimdva |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
raleqdv |
|
| 38 |
37
|
rspcev |
|
| 39 |
19 35 38
|
syl6an |
|
| 40 |
39
|
rexlimdva |
|
| 41 |
13 40
|
mpd |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
3 4
|
zaddcld |
|
| 44 |
43
|
adantr |
|
| 45 |
5
|
adantr |
|
| 46 |
3
|
adantr |
|
| 47 |
4
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
48 2
|
eleqtrdi |
|
| 50 |
|
eluzsub |
|
| 51 |
46 47 49 50
|
syl3anc |
|
| 52 |
51 1
|
eleqtrrdi |
|
| 53 |
45 52
|
ffvelcdmd |
|
| 54 |
6 53
|
fmpt3d |
|
| 55 |
54
|
adantr |
|
| 56 |
6
|
ad2antrr |
|
| 57 |
56
|
fveq1d |
|
| 58 |
|
fvoveq1 |
|
| 59 |
|
eqid |
|
| 60 |
|
fvex |
|
| 61 |
58 59 60
|
fvmpt |
|
| 62 |
61
|
ad2antrl |
|
| 63 |
57 62
|
eqtrd |
|
| 64 |
63
|
fveq1d |
|
| 65 |
|
eqidd |
|
| 66 |
|
ulmcl |
|
| 67 |
66
|
adantl |
|
| 68 |
|
ulmscl |
|
| 69 |
68
|
adantl |
|
| 70 |
2 44 55 64 65 67 69
|
ulm2 |
|
| 71 |
42 70
|
mpbird |
|
| 72 |
71
|
ex |
|