Metamath Proof Explorer


Theorem umgrres

Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 ) is a multigraph. (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)

Ref Expression
Hypotheses upgrres.v V=VtxG
upgrres.e E=iEdgG
upgrres.f F=idomE|NEi
upgrres.s S=VNEF
Assertion umgrres GUMGraphNVSUMGraph

Proof

Step Hyp Ref Expression
1 upgrres.v V=VtxG
2 upgrres.e E=iEdgG
3 upgrres.f F=idomE|NEi
4 upgrres.s S=VNEF
5 umgruhgr GUMGraphGUHGraph
6 2 uhgrfun GUHGraphFunE
7 funres FunEFunEF
8 5 6 7 3syl GUMGraphFunEF
9 8 funfnd GUMGraphEFFndomEF
10 9 adantr GUMGraphNVEFFndomEF
11 1 2 3 umgrreslem GUMGraphNVranEFp𝒫VN|p=2
12 df-f EF:domEFp𝒫VN|p=2EFFndomEFranEFp𝒫VN|p=2
13 10 11 12 sylanbrc GUMGraphNVEF:domEFp𝒫VN|p=2
14 opex VNEFV
15 4 14 eqeltri SV
16 1 2 3 4 uhgrspan1lem2 VtxS=VN
17 16 eqcomi VN=VtxS
18 1 2 3 4 uhgrspan1lem3 iEdgS=EF
19 18 eqcomi EF=iEdgS
20 17 19 isumgrs SVSUMGraphEF:domEFp𝒫VN|p=2
21 15 20 mp1i GUMGraphNVSUMGraphEF:domEFp𝒫VN|p=2
22 13 21 mpbird GUMGraphNVSUMGraph