Description: Lemma for unbnn . After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | unblem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson | |
|
2 | sstr | |
|
3 | 1 2 | mpan2 | |
4 | 3 | ssdifssd | |
5 | 4 | ad2antrr | |
6 | ssel | |
|
7 | peano2b | |
|
8 | 6 7 | imbitrdi | |
9 | eleq1 | |
|
10 | 9 | rexbidv | |
11 | 10 | rspccva | |
12 | ssel | |
|
13 | nnord | |
|
14 | ordn2lp | |
|
15 | imnan | |
|
16 | 14 15 | sylibr | |
17 | 16 | con2d | |
18 | 13 17 | syl | |
19 | 12 18 | syl6 | |
20 | 19 | imdistand | |
21 | eldif | |
|
22 | ne0i | |
|
23 | 21 22 | sylbir | |
24 | 20 23 | syl6 | |
25 | 24 | expd | |
26 | 25 | rexlimdv | |
27 | 11 26 | syl5 | |
28 | 8 27 | sylan2d | |
29 | 28 | impl | |
30 | onint | |
|
31 | 5 29 30 | syl2anc | |
32 | 31 | eldifad | |