Metamath Proof Explorer


Theorem unblem1

Description: Lemma for unbnn . After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003)

Ref Expression
Assertion unblem1 BωxωyBxyABBsucAB

Proof

Step Hyp Ref Expression
1 omsson ωOn
2 sstr BωωOnBOn
3 1 2 mpan2 BωBOn
4 3 ssdifssd BωBsucAOn
5 4 ad2antrr BωxωyBxyABBsucAOn
6 ssel BωABAω
7 peano2b AωsucAω
8 6 7 imbitrdi BωABsucAω
9 eleq1 x=sucAxysucAy
10 9 rexbidv x=sucAyBxyyBsucAy
11 10 rspccva xωyBxysucAωyBsucAy
12 ssel BωyByω
13 nnord yωOrdy
14 ordn2lp Ordy¬ysucAsucAy
15 imnan ysucA¬sucAy¬ysucAsucAy
16 14 15 sylibr OrdyysucA¬sucAy
17 16 con2d OrdysucAy¬ysucA
18 13 17 syl yωsucAy¬ysucA
19 12 18 syl6 BωyBsucAy¬ysucA
20 19 imdistand BωyBsucAyyB¬ysucA
21 eldif yBsucAyB¬ysucA
22 ne0i yBsucABsucA
23 21 22 sylbir yB¬ysucABsucA
24 20 23 syl6 BωyBsucAyBsucA
25 24 expd BωyBsucAyBsucA
26 25 rexlimdv BωyBsucAyBsucA
27 11 26 syl5 BωxωyBxysucAωBsucA
28 8 27 sylan2d BωxωyBxyABBsucA
29 28 impl BωxωyBxyABBsucA
30 onint BsucAOnBsucABsucABsucA
31 5 29 30 syl2anc BωxωyBxyABBsucABsucA
32 31 eldifad BωxωyBxyABBsucAB