| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  | 
						
							| 2 |  | uniiun |  | 
						
							| 3 |  | simpl1 |  | 
						
							| 4 |  | toponmax |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 |  | simpl2l |  | 
						
							| 7 | 5 6 | ssexd |  | 
						
							| 8 |  | simpl2r |  | 
						
							| 9 | 5 8 | ssexd |  | 
						
							| 10 |  | uniprg |  | 
						
							| 11 | 7 9 10 | syl2anc |  | 
						
							| 12 | 2 11 | eqtr3id |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 |  | vex |  | 
						
							| 15 | 14 | elpr |  | 
						
							| 16 |  | simpl2 |  | 
						
							| 17 |  | sseq1 |  | 
						
							| 18 | 17 | biimprd |  | 
						
							| 19 |  | sseq1 |  | 
						
							| 20 | 19 | biimprd |  | 
						
							| 21 | 18 20 | jaoa |  | 
						
							| 22 | 16 21 | mpan9 |  | 
						
							| 23 | 15 22 | sylan2b |  | 
						
							| 24 |  | simpl3 |  | 
						
							| 25 |  | elin |  | 
						
							| 26 | 24 25 | sylib |  | 
						
							| 27 |  | eleq2 |  | 
						
							| 28 | 27 | biimprd |  | 
						
							| 29 |  | eleq2 |  | 
						
							| 30 | 29 | biimprd |  | 
						
							| 31 | 28 30 | jaoa |  | 
						
							| 32 | 26 31 | mpan9 |  | 
						
							| 33 | 15 32 | sylan2b |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 |  | oveq2 |  | 
						
							| 36 | 35 | eleq1d |  | 
						
							| 37 | 36 | biimprd |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | eleq1d |  | 
						
							| 40 | 39 | biimprd |  | 
						
							| 41 | 37 40 | jaoa |  | 
						
							| 42 | 34 41 | mpan9 |  | 
						
							| 43 | 15 42 | sylan2b |  | 
						
							| 44 | 3 23 33 43 | iunconn |  | 
						
							| 45 | 13 44 | eqeltrrd |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 46 | 3expia |  | 
						
							| 48 | 47 | exlimdv |  | 
						
							| 49 | 1 48 | biimtrid |  | 
						
							| 50 | 49 | 3impia |  |