Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 11-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | unconn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |
|
2 | uniiun | |
|
3 | simpl1 | |
|
4 | toponmax | |
|
5 | 3 4 | syl | |
6 | simpl2l | |
|
7 | 5 6 | ssexd | |
8 | simpl2r | |
|
9 | 5 8 | ssexd | |
10 | uniprg | |
|
11 | 7 9 10 | syl2anc | |
12 | 2 11 | eqtr3id | |
13 | 12 | oveq2d | |
14 | vex | |
|
15 | 14 | elpr | |
16 | simpl2 | |
|
17 | sseq1 | |
|
18 | 17 | biimprd | |
19 | sseq1 | |
|
20 | 19 | biimprd | |
21 | 18 20 | jaoa | |
22 | 16 21 | mpan9 | |
23 | 15 22 | sylan2b | |
24 | simpl3 | |
|
25 | elin | |
|
26 | 24 25 | sylib | |
27 | eleq2 | |
|
28 | 27 | biimprd | |
29 | eleq2 | |
|
30 | 29 | biimprd | |
31 | 28 30 | jaoa | |
32 | 26 31 | mpan9 | |
33 | 15 32 | sylan2b | |
34 | simpr | |
|
35 | oveq2 | |
|
36 | 35 | eleq1d | |
37 | 36 | biimprd | |
38 | oveq2 | |
|
39 | 38 | eleq1d | |
40 | 39 | biimprd | |
41 | 37 40 | jaoa | |
42 | 34 41 | mpan9 | |
43 | 15 42 | sylan2b | |
44 | 3 23 33 43 | iunconn | |
45 | 13 44 | eqeltrrd | |
46 | 45 | ex | |
47 | 46 | 3expia | |
48 | 47 | exlimdv | |
49 | 1 48 | biimtrid | |
50 | 49 | 3impia | |