Metamath Proof Explorer


Theorem unfiOLD

Description: Obsolete version of unfi as of 7-Aug-2024. (Contributed by NM, 16-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion unfiOLD AFinBFinABFin

Proof

Step Hyp Ref Expression
1 diffi BFinBAFin
2 reeanv xωyωAxBAyxωAxyωBAy
3 isfi AFinxωAx
4 isfi BAFinyωBAy
5 3 4 anbi12i AFinBAFinxωAxyωBAy
6 2 5 bitr4i xωyωAxBAyAFinBAFin
7 nnacl xωyωx+𝑜yω
8 unfilem3 xωyωyx+𝑜yx
9 entr BAyyx+𝑜yxBAx+𝑜yx
10 9 expcom yx+𝑜yxBAyBAx+𝑜yx
11 8 10 syl xωyωBAyBAx+𝑜yx
12 disjdif ABA=
13 disjdif xx+𝑜yx=
14 unen AxBAx+𝑜yxABA=xx+𝑜yx=ABAxx+𝑜yx
15 12 13 14 mpanr12 AxBAx+𝑜yxABAxx+𝑜yx
16 undif2 ABA=AB
17 16 a1i xωyωABA=AB
18 nnaword1 xωyωxx+𝑜y
19 undif xx+𝑜yxx+𝑜yx=x+𝑜y
20 18 19 sylib xωyωxx+𝑜yx=x+𝑜y
21 17 20 breq12d xωyωABAxx+𝑜yxABx+𝑜y
22 15 21 imbitrid xωyωAxBAx+𝑜yxABx+𝑜y
23 11 22 sylan2d xωyωAxBAyABx+𝑜y
24 breq2 z=x+𝑜yABzABx+𝑜y
25 24 rspcev x+𝑜yωABx+𝑜yzωABz
26 isfi ABFinzωABz
27 25 26 sylibr x+𝑜yωABx+𝑜yABFin
28 7 23 27 syl6an xωyωAxBAyABFin
29 28 rexlimivv xωyωAxBAyABFin
30 6 29 sylbir AFinBAFinABFin
31 1 30 sylan2 AFinBFinABFin