Metamath Proof Explorer


Theorem upgrimpthslem2

Description: Lemma 2 for upgrimpths . (Contributed by AV, 31-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimpths.p φ F Paths G P
Assertion upgrimpthslem2 φ X 1 ..^ F ¬ N P X = N P 0 ¬ N P X = N P F

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimpths.p φ F Paths G P
8 eqid Vtx G = Vtx G
9 eqid Vtx H = Vtx H
10 8 9 grimf1o N G GraphIso H N : Vtx G 1-1 onto Vtx H
11 f1of1 N : Vtx G 1-1 onto Vtx H N : Vtx G 1-1 Vtx H
12 5 10 11 3syl φ N : Vtx G 1-1 Vtx H
13 12 adantr φ X 1 ..^ F N : Vtx G 1-1 Vtx H
14 pthiswlk F Paths G P F Walks G P
15 8 wlkp F Walks G P P : 0 F Vtx G
16 15 adantr F Walks G P X 1 ..^ F P : 0 F Vtx G
17 fzo0ss1 1 ..^ F 0 ..^ F
18 fzossfz 0 ..^ F 0 F
19 17 18 sstri 1 ..^ F 0 F
20 19 sseli X 1 ..^ F X 0 F
21 20 adantl F Walks G P X 1 ..^ F X 0 F
22 16 21 ffvelcdmd F Walks G P X 1 ..^ F P X Vtx G
23 22 ex F Walks G P X 1 ..^ F P X Vtx G
24 7 14 23 3syl φ X 1 ..^ F P X Vtx G
25 24 imp φ X 1 ..^ F P X Vtx G
26 wlkcl F Walks G P F 0
27 0elfz F 0 0 0 F
28 26 27 syl F Walks G P 0 0 F
29 15 28 ffvelcdmd F Walks G P P 0 Vtx G
30 7 14 29 3syl φ P 0 Vtx G
31 30 adantr φ X 1 ..^ F P 0 Vtx G
32 7 adantr φ X 1 ..^ F F Paths G P
33 simpr φ X 1 ..^ F X 1 ..^ F
34 7 14 26 3syl φ F 0
35 34 27 syl φ 0 0 F
36 35 adantr φ X 1 ..^ F 0 0 F
37 elfzole1 X 1 ..^ F 1 X
38 elfzoelz X 1 ..^ F X
39 zgt0ge1 X 0 < X 1 X
40 38 39 syl X 1 ..^ F 0 < X 1 X
41 simpr X 1 ..^ F 0 < X 0 < X
42 41 gt0ne0d X 1 ..^ F 0 < X X 0
43 42 ex X 1 ..^ F 0 < X X 0
44 40 43 sylbird X 1 ..^ F 1 X X 0
45 37 44 mpd X 1 ..^ F X 0
46 45 adantl φ X 1 ..^ F X 0
47 pthdivtx F Paths G P X 1 ..^ F 0 0 F X 0 P X P 0
48 32 33 36 46 47 syl13anc φ X 1 ..^ F P X P 0
49 dff14i N : Vtx G 1-1 Vtx H P X Vtx G P 0 Vtx G P X P 0 N P X N P 0
50 13 25 31 48 49 syl13anc φ X 1 ..^ F N P X N P 0
51 nn0fz0 F 0 F 0 F
52 26 51 sylib F Walks G P F 0 F
53 15 52 ffvelcdmd F Walks G P P F Vtx G
54 7 14 53 3syl φ P F Vtx G
55 54 adantr φ X 1 ..^ F P F Vtx G
56 34 51 sylib φ F 0 F
57 56 adantr φ X 1 ..^ F F 0 F
58 38 zred X 1 ..^ F X
59 elfzolt2 X 1 ..^ F X < F
60 58 59 ltned X 1 ..^ F X F
61 60 adantl φ X 1 ..^ F X F
62 pthdivtx F Paths G P X 1 ..^ F F 0 F X F P X P F
63 32 33 57 61 62 syl13anc φ X 1 ..^ F P X P F
64 dff14i N : Vtx G 1-1 Vtx H P X Vtx G P F Vtx G P X P F N P X N P F
65 13 25 55 63 64 syl13anc φ X 1 ..^ F N P X N P F
66 7 14 15 3syl φ P : 0 F Vtx G
67 66 adantr φ X 1 ..^ F P : 0 F Vtx G
68 20 adantl φ X 1 ..^ F X 0 F
69 67 68 fvco3d φ X 1 ..^ F N P X = N P X
70 67 36 fvco3d φ X 1 ..^ F N P 0 = N P 0
71 69 70 neeq12d φ X 1 ..^ F N P X N P 0 N P X N P 0
72 67 57 fvco3d φ X 1 ..^ F N P F = N P F
73 69 72 neeq12d φ X 1 ..^ F N P X N P F N P X N P F
74 71 73 anbi12d φ X 1 ..^ F N P X N P 0 N P X N P F N P X N P 0 N P X N P F
75 50 65 74 mpbir2and φ X 1 ..^ F N P X N P 0 N P X N P F
76 df-ne N P X N P 0 ¬ N P X = N P 0
77 df-ne N P X N P F ¬ N P X = N P F
78 76 77 anbi12i N P X N P 0 N P X N P F ¬ N P X = N P 0 ¬ N P X = N P F
79 75 78 sylib φ X 1 ..^ F ¬ N P X = N P 0 ¬ N P X = N P F