Metamath Proof Explorer


Theorem usgredg2v

Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V=VtxG
usgredg2v.e E=iEdgG
usgredg2v.a A=xdomE|NEx
usgredg2v.f F=yAιzV|Ey=zN
Assertion usgredg2v GUSGraphNVF:A1-1V

Proof

Step Hyp Ref Expression
1 usgredg2v.v V=VtxG
2 usgredg2v.e E=iEdgG
3 usgredg2v.a A=xdomE|NEx
4 usgredg2v.f F=yAιzV|Ey=zN
5 1 2 3 usgredg2vlem1 GUSGraphyAιzV|Ey=zNV
6 5 ralrimiva GUSGraphyAιzV|Ey=zNV
7 6 adantr GUSGraphNVyAιzV|Ey=zNV
8 2 usgrf1 GUSGraphE:domE1-1ranE
9 8 adantr GUSGraphNVE:domE1-1ranE
10 elrabi yxdomE|NExydomE
11 10 3 eleq2s yAydomE
12 elrabi wxdomE|NExwdomE
13 12 3 eleq2s wAwdomE
14 11 13 anim12i yAwAydomEwdomE
15 f1fveq E:domE1-1ranEydomEwdomEEy=Ewy=w
16 9 14 15 syl2an GUSGraphNVyAwAEy=Ewy=w
17 16 bicomd GUSGraphNVyAwAy=wEy=Ew
18 17 notbid GUSGraphNVyAwA¬y=w¬Ey=Ew
19 simpl GUSGraphNVGUSGraph
20 simpl yAwAyA
21 19 20 anim12i GUSGraphNVyAwAGUSGraphyA
22 preq1 u=zuN=zN
23 22 eqeq2d u=zEy=uNEy=zN
24 23 cbvriotavw ιuV|Ey=uN=ιzV|Ey=zN
25 1 2 3 usgredg2vlem2 GUSGraphyAιuV|Ey=uN=ιzV|Ey=zNEy=ιuV|Ey=uNN
26 21 24 25 mpisyl GUSGraphNVyAwAEy=ιuV|Ey=uNN
27 an3 GUSGraphNVyAwAGUSGraphwA
28 22 eqeq2d u=zEw=uNEw=zN
29 28 cbvriotavw ιuV|Ew=uN=ιzV|Ew=zN
30 1 2 3 usgredg2vlem2 GUSGraphwAιuV|Ew=uN=ιzV|Ew=zNEw=ιuV|Ew=uNN
31 27 29 30 mpisyl GUSGraphNVyAwAEw=ιuV|Ew=uNN
32 26 31 eqeq12d GUSGraphNVyAwAEy=EwιuV|Ey=uNN=ιuV|Ew=uNN
33 32 notbid GUSGraphNVyAwA¬Ey=Ew¬ιuV|Ey=uNN=ιuV|Ew=uNN
34 riotaex ιuV|Ey=uNV
35 34 a1i NVιuV|Ey=uNV
36 id NVNV
37 riotaex ιuV|Ew=uNV
38 37 a1i NVιuV|Ew=uNV
39 preq12bg ιuV|Ey=uNVNVιuV|Ew=uNVNVιuV|Ey=uNN=ιuV|Ew=uNNιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN
40 35 36 38 36 39 syl22anc NVιuV|Ey=uNN=ιuV|Ew=uNNιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN
41 40 notbid NV¬ιuV|Ey=uNN=ιuV|Ew=uNN¬ιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN
42 41 adantl GUSGraphNV¬ιuV|Ey=uNN=ιuV|Ew=uNN¬ιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN
43 ioran ¬ιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN¬ιuV|Ey=uN=ιuV|Ew=uNN=N¬ιuV|Ey=uN=NN=ιuV|Ew=uN
44 ianor ¬ιuV|Ey=uN=ιuV|Ew=uNN=N¬ιuV|Ey=uN=ιuV|Ew=uN¬N=N
45 24 29 eqeq12i ιuV|Ey=uN=ιuV|Ew=uNιzV|Ey=zN=ιzV|Ew=zN
46 45 notbii ¬ιuV|Ey=uN=ιuV|Ew=uN¬ιzV|Ey=zN=ιzV|Ew=zN
47 46 biimpi ¬ιuV|Ey=uN=ιuV|Ew=uN¬ιzV|Ey=zN=ιzV|Ew=zN
48 47 a1d ¬ιuV|Ey=uN=ιuV|Ew=uNGUSGraph¬ιzV|Ey=zN=ιzV|Ew=zN
49 eqid N=N
50 49 pm2.24i ¬N=NGUSGraph¬ιzV|Ey=zN=ιzV|Ew=zN
51 48 50 jaoi ¬ιuV|Ey=uN=ιuV|Ew=uN¬N=NGUSGraph¬ιzV|Ey=zN=ιzV|Ew=zN
52 44 51 sylbi ¬ιuV|Ey=uN=ιuV|Ew=uNN=NGUSGraph¬ιzV|Ey=zN=ιzV|Ew=zN
53 52 adantr ¬ιuV|Ey=uN=ιuV|Ew=uNN=N¬ιuV|Ey=uN=NN=ιuV|Ew=uNGUSGraph¬ιzV|Ey=zN=ιzV|Ew=zN
54 43 53 sylbi ¬ιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uNGUSGraph¬ιzV|Ey=zN=ιzV|Ew=zN
55 54 com12 GUSGraph¬ιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN¬ιzV|Ey=zN=ιzV|Ew=zN
56 55 adantr GUSGraphNV¬ιuV|Ey=uN=ιuV|Ew=uNN=NιuV|Ey=uN=NN=ιuV|Ew=uN¬ιzV|Ey=zN=ιzV|Ew=zN
57 42 56 sylbid GUSGraphNV¬ιuV|Ey=uNN=ιuV|Ew=uNN¬ιzV|Ey=zN=ιzV|Ew=zN
58 57 adantr GUSGraphNVyAwA¬ιuV|Ey=uNN=ιuV|Ew=uNN¬ιzV|Ey=zN=ιzV|Ew=zN
59 33 58 sylbid GUSGraphNVyAwA¬Ey=Ew¬ιzV|Ey=zN=ιzV|Ew=zN
60 18 59 sylbid GUSGraphNVyAwA¬y=w¬ιzV|Ey=zN=ιzV|Ew=zN
61 60 con4d GUSGraphNVyAwAιzV|Ey=zN=ιzV|Ew=zNy=w
62 61 ralrimivva GUSGraphNVyAwAιzV|Ey=zN=ιzV|Ew=zNy=w
63 fveqeq2 y=wEy=zNEw=zN
64 63 riotabidv y=wιzV|Ey=zN=ιzV|Ew=zN
65 4 64 f1mpt F:A1-1VyAιzV|Ey=zNVyAwAιzV|Ey=zN=ιzV|Ew=zNy=w
66 7 62 65 sylanbrc GUSGraphNVF:A1-1V