Metamath Proof Explorer


Theorem uspgrsprf

Description: The mapping F is a function from the "simple pseudographs" with a fixed set of vertices V into the subsets of the set of pairs over the set V . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrsprf.f F=gG2ndg
Assertion uspgrsprf F:GP

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 uspgrsprf.f F=gG2ndg
4 2 eleq2i gGgve|v=VqUSHGraphVtxq=vEdgq=e
5 elopab gve|v=VqUSHGraphVtxq=vEdgq=eveg=vev=VqUSHGraphVtxq=vEdgq=e
6 4 5 bitri gGveg=vev=VqUSHGraphVtxq=vEdgq=e
7 uspgrupgr qUSHGraphqUPGraph
8 upgredgssspr qUPGraphEdgqPairsVtxq
9 7 8 syl qUSHGraphEdgqPairsVtxq
10 9 adantr qUSHGraphVtxq=vEdgq=eEdgqPairsVtxq
11 simpr Vtxq=vEdgq=eEdgq=e
12 fveq2 Vtxq=vPairsVtxq=Pairsv
13 12 adantr Vtxq=vEdgq=ePairsVtxq=Pairsv
14 11 13 sseq12d Vtxq=vEdgq=eEdgqPairsVtxqePairsv
15 14 adantl qUSHGraphVtxq=vEdgq=eEdgqPairsVtxqePairsv
16 10 15 mpbid qUSHGraphVtxq=vEdgq=eePairsv
17 16 rexlimiva qUSHGraphVtxq=vEdgq=eePairsv
18 17 adantl v=VqUSHGraphVtxq=vEdgq=eePairsv
19 fveq2 v=VPairsv=PairsV
20 19 sseq2d v=VePairsvePairsV
21 20 adantr v=VqUSHGraphVtxq=vEdgq=eePairsvePairsV
22 18 21 mpbid v=VqUSHGraphVtxq=vEdgq=eePairsV
23 22 adantl g=vev=VqUSHGraphVtxq=vEdgq=eePairsV
24 vex vV
25 vex eV
26 24 25 op2ndd g=ve2ndg=e
27 26 sseq1d g=ve2ndgPairsVePairsV
28 27 adantr g=vev=VqUSHGraphVtxq=vEdgq=e2ndgPairsVePairsV
29 23 28 mpbird g=vev=VqUSHGraphVtxq=vEdgq=e2ndgPairsV
30 1 eleq2i 2ndgP2ndg𝒫PairsV
31 fvex 2ndgV
32 31 elpw 2ndg𝒫PairsV2ndgPairsV
33 30 32 bitri 2ndgP2ndgPairsV
34 29 33 sylibr g=vev=VqUSHGraphVtxq=vEdgq=e2ndgP
35 34 exlimivv veg=vev=VqUSHGraphVtxq=vEdgq=e2ndgP
36 6 35 sylbi gG2ndgP
37 3 36 fmpti F:GP