Metamath Proof Explorer


Theorem ustexsym

Description: In an uniform structure, for any entourage V , there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018)

Ref Expression
Assertion ustexsym UUnifOnXVUwUw-1=wwV

Proof

Step Hyp Ref Expression
1 simplll UUnifOnXVUxUxxVUUnifOnX
2 ustinvel UUnifOnXxUx-1U
3 2 ad4ant13 UUnifOnXVUxUxxVx-1U
4 simplr UUnifOnXVUxUxxVxU
5 ustincl UUnifOnXx-1UxUx-1xU
6 1 3 4 5 syl3anc UUnifOnXVUxUxxVx-1xU
7 ustrel UUnifOnXxURelx
8 dfrel2 Relxx-1-1=x
9 7 8 sylib UUnifOnXxUx-1-1=x
10 9 ineq1d UUnifOnXxUx-1-1x-1=xx-1
11 cnvin x-1x-1=x-1-1x-1
12 incom x-1x=xx-1
13 10 11 12 3eqtr4g UUnifOnXxUx-1x-1=x-1x
14 13 ad4ant13 UUnifOnXVUxUxxVx-1x-1=x-1x
15 inss2 x-1xx
16 ustssco UUnifOnXxUxxx
17 16 ad4ant13 UUnifOnXVUxUxxVxxx
18 simpr UUnifOnXVUxUxxVxxV
19 17 18 sstrd UUnifOnXVUxUxxVxV
20 15 19 sstrid UUnifOnXVUxUxxVx-1xV
21 cnveq w=x-1xw-1=x-1x-1
22 id w=x-1xw=x-1x
23 21 22 eqeq12d w=x-1xw-1=wx-1x-1=x-1x
24 sseq1 w=x-1xwVx-1xV
25 23 24 anbi12d w=x-1xw-1=wwVx-1x-1=x-1xx-1xV
26 25 rspcev x-1xUx-1x-1=x-1xx-1xVwUw-1=wwV
27 6 14 20 26 syl12anc UUnifOnXVUxUxxVwUw-1=wwV
28 ustexhalf UUnifOnXVUxUxxV
29 27 28 r19.29a UUnifOnXVUwUw-1=wwV