Metamath Proof Explorer


Theorem ustfilxp

Description: A uniform structure on a nonempty base is a filter. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion ustfilxp X U UnifOn X U Fil X × X

Proof

Step Hyp Ref Expression
1 elfvex U UnifOn X X V
2 isust X V U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
3 1 2 syl U UnifOn X U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
4 3 ibi U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
5 4 adantl X U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
6 5 simp1d X U UnifOn X U 𝒫 X × X
7 5 simp2d X U UnifOn X X × X U
8 7 ne0d X U UnifOn X U
9 5 simp3d X U UnifOn X v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
10 9 r19.21bi X U UnifOn X v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
11 10 simp3d X U UnifOn X v U I X v v -1 U w U w w v
12 11 simp1d X U UnifOn X v U I X v
13 opelidres w V w w I X w X
14 13 elv w w I X w X
15 14 biimpri w X w w I X
16 15 rgen w X w w I X
17 r19.2z X w X w w I X w X w w I X
18 16 17 mpan2 X w X w w I X
19 18 ad2antrr X U UnifOn X v U w X w w I X
20 ne0i w w I X I X
21 20 rexlimivw w X w w I X I X
22 19 21 syl X U UnifOn X v U I X
23 ssn0 I X v I X v
24 12 22 23 syl2anc X U UnifOn X v U v
25 24 nelrdva X U UnifOn X ¬ U
26 df-nel U ¬ U
27 25 26 sylibr X U UnifOn X U
28 10 simp2d X U UnifOn X v U w U v w U
29 28 r19.21bi X U UnifOn X v U w U v w U
30 vex w V
31 30 inex2 v w V
32 31 pwid v w 𝒫 v w
33 32 a1i X U UnifOn X v U w U v w 𝒫 v w
34 29 33 elind X U UnifOn X v U w U v w U 𝒫 v w
35 34 ne0d X U UnifOn X v U w U U 𝒫 v w
36 35 ralrimiva X U UnifOn X v U w U U 𝒫 v w
37 36 ralrimiva X U UnifOn X v U w U U 𝒫 v w
38 8 27 37 3jca X U UnifOn X U U v U w U U 𝒫 v w
39 1 1 xpexd U UnifOn X X × X V
40 isfbas X × X V U fBas X × X U 𝒫 X × X U U v U w U U 𝒫 v w
41 39 40 syl U UnifOn X U fBas X × X U 𝒫 X × X U U v U w U U 𝒫 v w
42 41 adantl X U UnifOn X U fBas X × X U 𝒫 X × X U U v U w U U 𝒫 v w
43 6 38 42 mpbir2and X U UnifOn X U fBas X × X
44 n0 U 𝒫 w v v U 𝒫 w
45 elin v U 𝒫 w v U v 𝒫 w
46 velpw v 𝒫 w v w
47 46 anbi2i v U v 𝒫 w v U v w
48 45 47 bitri v U 𝒫 w v U v w
49 48 exbii v v U 𝒫 w v v U v w
50 44 49 bitri U 𝒫 w v v U v w
51 10 simp1d X U UnifOn X v U w 𝒫 X × X v w w U
52 51 r19.21bi X U UnifOn X v U w 𝒫 X × X v w w U
53 52 an32s X U UnifOn X w 𝒫 X × X v U v w w U
54 53 expimpd X U UnifOn X w 𝒫 X × X v U v w w U
55 54 exlimdv X U UnifOn X w 𝒫 X × X v v U v w w U
56 50 55 syl5bi X U UnifOn X w 𝒫 X × X U 𝒫 w w U
57 56 ralrimiva X U UnifOn X w 𝒫 X × X U 𝒫 w w U
58 isfil U Fil X × X U fBas X × X w 𝒫 X × X U 𝒫 w w U
59 43 57 58 sylanbrc X U UnifOn X U Fil X × X