| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvex |
|
| 2 |
|
isust |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
ibi |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
simp1d |
|
| 7 |
5
|
simp2d |
|
| 8 |
7
|
ne0d |
|
| 9 |
5
|
simp3d |
|
| 10 |
9
|
r19.21bi |
|
| 11 |
10
|
simp3d |
|
| 12 |
11
|
simp1d |
|
| 13 |
|
opelidres |
|
| 14 |
13
|
elv |
|
| 15 |
14
|
biimpri |
|
| 16 |
15
|
rgen |
|
| 17 |
|
r19.2z |
|
| 18 |
16 17
|
mpan2 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
ne0i |
|
| 21 |
20
|
rexlimivw |
|
| 22 |
19 21
|
syl |
|
| 23 |
|
ssn0 |
|
| 24 |
12 22 23
|
syl2anc |
|
| 25 |
24
|
nelrdva |
|
| 26 |
|
df-nel |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
10
|
simp2d |
|
| 29 |
28
|
r19.21bi |
|
| 30 |
|
vex |
|
| 31 |
30
|
inex2 |
|
| 32 |
31
|
pwid |
|
| 33 |
32
|
a1i |
|
| 34 |
29 33
|
elind |
|
| 35 |
34
|
ne0d |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
8 27 37
|
3jca |
|
| 39 |
1 1
|
xpexd |
|
| 40 |
|
isfbas |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
adantl |
|
| 43 |
6 38 42
|
mpbir2and |
|
| 44 |
|
n0 |
|
| 45 |
|
elin |
|
| 46 |
|
velpw |
|
| 47 |
46
|
anbi2i |
|
| 48 |
45 47
|
bitri |
|
| 49 |
48
|
exbii |
|
| 50 |
44 49
|
bitri |
|
| 51 |
10
|
simp1d |
|
| 52 |
51
|
r19.21bi |
|
| 53 |
52
|
an32s |
|
| 54 |
53
|
expimpd |
|
| 55 |
54
|
exlimdv |
|
| 56 |
50 55
|
biimtrid |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
|
isfil |
|
| 59 |
43 57 58
|
sylanbrc |
|