| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvex |
|- ( U e. ( UnifOn ` X ) -> X e. _V ) |
| 2 |
|
isust |
|- ( X e. _V -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
| 3 |
1 2
|
syl |
|- ( U e. ( UnifOn ` X ) -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
| 4 |
3
|
ibi |
|- ( U e. ( UnifOn ` X ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 5 |
4
|
adantl |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 6 |
5
|
simp1d |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U C_ ~P ( X X. X ) ) |
| 7 |
5
|
simp2d |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( X X. X ) e. U ) |
| 8 |
7
|
ne0d |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U =/= (/) ) |
| 9 |
5
|
simp3d |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) |
| 10 |
9
|
r19.21bi |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) |
| 11 |
10
|
simp3d |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) |
| 12 |
11
|
simp1d |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( _I |` X ) C_ v ) |
| 13 |
|
opelidres |
|- ( w e. _V -> ( <. w , w >. e. ( _I |` X ) <-> w e. X ) ) |
| 14 |
13
|
elv |
|- ( <. w , w >. e. ( _I |` X ) <-> w e. X ) |
| 15 |
14
|
biimpri |
|- ( w e. X -> <. w , w >. e. ( _I |` X ) ) |
| 16 |
15
|
rgen |
|- A. w e. X <. w , w >. e. ( _I |` X ) |
| 17 |
|
r19.2z |
|- ( ( X =/= (/) /\ A. w e. X <. w , w >. e. ( _I |` X ) ) -> E. w e. X <. w , w >. e. ( _I |` X ) ) |
| 18 |
16 17
|
mpan2 |
|- ( X =/= (/) -> E. w e. X <. w , w >. e. ( _I |` X ) ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> E. w e. X <. w , w >. e. ( _I |` X ) ) |
| 20 |
|
ne0i |
|- ( <. w , w >. e. ( _I |` X ) -> ( _I |` X ) =/= (/) ) |
| 21 |
20
|
rexlimivw |
|- ( E. w e. X <. w , w >. e. ( _I |` X ) -> ( _I |` X ) =/= (/) ) |
| 22 |
19 21
|
syl |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( _I |` X ) =/= (/) ) |
| 23 |
|
ssn0 |
|- ( ( ( _I |` X ) C_ v /\ ( _I |` X ) =/= (/) ) -> v =/= (/) ) |
| 24 |
12 22 23
|
syl2anc |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> v =/= (/) ) |
| 25 |
24
|
nelrdva |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> -. (/) e. U ) |
| 26 |
|
df-nel |
|- ( (/) e/ U <-> -. (/) e. U ) |
| 27 |
25 26
|
sylibr |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> (/) e/ U ) |
| 28 |
10
|
simp2d |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> A. w e. U ( v i^i w ) e. U ) |
| 29 |
28
|
r19.21bi |
|- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( v i^i w ) e. U ) |
| 30 |
|
vex |
|- w e. _V |
| 31 |
30
|
inex2 |
|- ( v i^i w ) e. _V |
| 32 |
31
|
pwid |
|- ( v i^i w ) e. ~P ( v i^i w ) |
| 33 |
32
|
a1i |
|- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( v i^i w ) e. ~P ( v i^i w ) ) |
| 34 |
29 33
|
elind |
|- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( v i^i w ) e. ( U i^i ~P ( v i^i w ) ) ) |
| 35 |
34
|
ne0d |
|- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( U i^i ~P ( v i^i w ) ) =/= (/) ) |
| 36 |
35
|
ralrimiva |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) |
| 37 |
36
|
ralrimiva |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) |
| 38 |
8 27 37
|
3jca |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) |
| 39 |
1 1
|
xpexd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. _V ) |
| 40 |
|
isfbas |
|- ( ( X X. X ) e. _V -> ( U e. ( fBas ` ( X X. X ) ) <-> ( U C_ ~P ( X X. X ) /\ ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) ) ) |
| 41 |
39 40
|
syl |
|- ( U e. ( UnifOn ` X ) -> ( U e. ( fBas ` ( X X. X ) ) <-> ( U C_ ~P ( X X. X ) /\ ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) ) ) |
| 42 |
41
|
adantl |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( U e. ( fBas ` ( X X. X ) ) <-> ( U C_ ~P ( X X. X ) /\ ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) ) ) |
| 43 |
6 38 42
|
mpbir2and |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U e. ( fBas ` ( X X. X ) ) ) |
| 44 |
|
n0 |
|- ( ( U i^i ~P w ) =/= (/) <-> E. v v e. ( U i^i ~P w ) ) |
| 45 |
|
elin |
|- ( v e. ( U i^i ~P w ) <-> ( v e. U /\ v e. ~P w ) ) |
| 46 |
|
velpw |
|- ( v e. ~P w <-> v C_ w ) |
| 47 |
46
|
anbi2i |
|- ( ( v e. U /\ v e. ~P w ) <-> ( v e. U /\ v C_ w ) ) |
| 48 |
45 47
|
bitri |
|- ( v e. ( U i^i ~P w ) <-> ( v e. U /\ v C_ w ) ) |
| 49 |
48
|
exbii |
|- ( E. v v e. ( U i^i ~P w ) <-> E. v ( v e. U /\ v C_ w ) ) |
| 50 |
44 49
|
bitri |
|- ( ( U i^i ~P w ) =/= (/) <-> E. v ( v e. U /\ v C_ w ) ) |
| 51 |
10
|
simp1d |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) ) |
| 52 |
51
|
r19.21bi |
|- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. ~P ( X X. X ) ) -> ( v C_ w -> w e. U ) ) |
| 53 |
52
|
an32s |
|- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) /\ v e. U ) -> ( v C_ w -> w e. U ) ) |
| 54 |
53
|
expimpd |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) -> ( ( v e. U /\ v C_ w ) -> w e. U ) ) |
| 55 |
54
|
exlimdv |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) -> ( E. v ( v e. U /\ v C_ w ) -> w e. U ) ) |
| 56 |
50 55
|
biimtrid |
|- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) -> ( ( U i^i ~P w ) =/= (/) -> w e. U ) ) |
| 57 |
56
|
ralrimiva |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> A. w e. ~P ( X X. X ) ( ( U i^i ~P w ) =/= (/) -> w e. U ) ) |
| 58 |
|
isfil |
|- ( U e. ( Fil ` ( X X. X ) ) <-> ( U e. ( fBas ` ( X X. X ) ) /\ A. w e. ~P ( X X. X ) ( ( U i^i ~P w ) =/= (/) -> w e. U ) ) ) |
| 59 |
43 57 58
|
sylanbrc |
|- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U e. ( Fil ` ( X X. X ) ) ) |