Metamath Proof Explorer


Theorem uvcff

Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses uvcff.u U=RunitVecI
uvcff.y Y=RfreeLModI
uvcff.b B=BaseY
Assertion uvcff RRingIWU:IB

Proof

Step Hyp Ref Expression
1 uvcff.u U=RunitVecI
2 uvcff.y Y=RfreeLModI
3 uvcff.b B=BaseY
4 eqid 1R=1R
5 eqid 0R=0R
6 1 4 5 uvcfval RRingIWU=iIjIifj=i1R0R
7 eqid BaseR=BaseR
8 7 4 ringidcl RRing1RBaseR
9 7 5 ring0cl RRing0RBaseR
10 8 9 ifcld RRingifj=i1R0RBaseR
11 10 ad3antrrr RRingIWiIjIifj=i1R0RBaseR
12 11 fmpttd RRingIWiIjIifj=i1R0R:IBaseR
13 fvex BaseRV
14 elmapg BaseRVIWjIifj=i1R0RBaseRIjIifj=i1R0R:IBaseR
15 13 14 mpan IWjIifj=i1R0RBaseRIjIifj=i1R0R:IBaseR
16 15 ad2antlr RRingIWiIjIifj=i1R0RBaseRIjIifj=i1R0R:IBaseR
17 12 16 mpbird RRingIWiIjIifj=i1R0RBaseRI
18 mptexg IWjIifj=i1R0RV
19 18 ad2antlr RRingIWiIjIifj=i1R0RV
20 funmpt FunjIifj=i1R0R
21 20 a1i RRingIWiIFunjIifj=i1R0R
22 fvex 0RV
23 22 a1i RRingIWiI0RV
24 snfi iFin
25 24 a1i RRingIWiIiFin
26 eldifsni jIiji
27 26 adantl RRingIWiIjIiji
28 27 neneqd RRingIWiIjIi¬j=i
29 28 iffalsed RRingIWiIjIiifj=i1R0R=0R
30 simplr RRingIWiIIW
31 29 30 suppss2 RRingIWiIjIifj=i1R0Rsupp0Ri
32 suppssfifsupp jIifj=i1R0RVFunjIifj=i1R0R0RViFinjIifj=i1R0Rsupp0RifinSupp0RjIifj=i1R0R
33 19 21 23 25 31 32 syl32anc RRingIWiIfinSupp0RjIifj=i1R0R
34 2 7 5 3 frlmelbas RRingIWjIifj=i1R0RBjIifj=i1R0RBaseRIfinSupp0RjIifj=i1R0R
35 34 adantr RRingIWiIjIifj=i1R0RBjIifj=i1R0RBaseRIfinSupp0RjIifj=i1R0R
36 17 33 35 mpbir2and RRingIWiIjIifj=i1R0RB
37 6 36 fmpt3d RRingIWU:IB