Metamath Proof Explorer


Theorem uzubioo

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubioo.1 φM
uzubioo.2 Z=M
uzubioo.3 φX
Assertion uzubioo φkX+∞kZ

Proof

Step Hyp Ref Expression
1 uzubioo.1 φM
2 uzubioo.2 Z=M
3 uzubioo.3 φX
4 3 rexrd φX*
5 pnfxr +∞*
6 5 a1i φ+∞*
7 3 ceilcld φX
8 1zzd φ1
9 7 8 zaddcld φX+1
10 9 zred φX+1
11 1 zred φM
12 10 11 ifcld φifMX+1X+1M
13 7 zred φX
14 3 ceilged φXX
15 13 ltp1d φX<X+1
16 3 13 10 14 15 lelttrd φX<X+1
17 11 10 max2d φX+1ifMX+1X+1M
18 3 10 12 16 17 ltletrd φX<ifMX+1X+1M
19 12 ltpnfd φifMX+1X+1M<+∞
20 4 6 12 18 19 eliood φifMX+1X+1MX+∞
21 9 1 ifcld φifMX+1X+1M
22 max1 MX+1MifMX+1X+1M
23 11 10 22 syl2anc φMifMX+1X+1M
24 2 1 21 23 eluzd φifMX+1X+1MZ
25 eleq1 k=ifMX+1X+1MkZifMX+1X+1MZ
26 25 rspcev ifMX+1X+1MX+∞ifMX+1X+1MZkX+∞kZ
27 20 24 26 syl2anc φkX+∞kZ