| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inundif |  | 
						
							| 2 | 1 | fveq2i |  | 
						
							| 3 |  | inmbl |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | difmbl |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | indifcom |  | 
						
							| 8 |  | difin0 |  | 
						
							| 9 | 8 | ineq2i |  | 
						
							| 10 |  | in0 |  | 
						
							| 11 | 9 10 | eqtri |  | 
						
							| 12 | 7 11 | eqtri |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | mblvol |  | 
						
							| 15 | 4 14 | syl |  | 
						
							| 16 |  | inss1 |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | mblss |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | mblvol |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 |  | simprl |  | 
						
							| 23 | 21 22 | eqeltrrd |  | 
						
							| 24 |  | ovolsscl |  | 
						
							| 25 | 17 19 23 24 | syl3anc |  | 
						
							| 26 | 15 25 | eqeltrd |  | 
						
							| 27 |  | mblvol |  | 
						
							| 28 | 6 27 | syl |  | 
						
							| 29 |  | difssd |  | 
						
							| 30 |  | ovolsscl |  | 
						
							| 31 | 29 19 23 30 | syl3anc |  | 
						
							| 32 | 28 31 | eqeltrd |  | 
						
							| 33 |  | volun |  | 
						
							| 34 | 4 6 13 26 32 33 | syl32anc |  | 
						
							| 35 | 2 34 | eqtr3id |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 | 26 | recnd |  | 
						
							| 38 | 32 | recnd |  | 
						
							| 39 |  | simprr |  | 
						
							| 40 | 39 | recnd |  | 
						
							| 41 | 37 38 40 | addassd |  | 
						
							| 42 |  | simplr |  | 
						
							| 43 |  | disjdifr |  | 
						
							| 44 | 43 | a1i |  | 
						
							| 45 |  | volun |  | 
						
							| 46 | 6 42 44 32 39 45 | syl32anc |  | 
						
							| 47 |  | undif1 |  | 
						
							| 48 | 47 | fveq2i |  | 
						
							| 49 | 46 48 | eqtr3di |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 36 41 50 | 3eqtrd |  |