Metamath Proof Explorer


Theorem volinun

Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Assertion volinun AdomvolBdomvolvolAvolBvolA+volB=volAB+volAB

Proof

Step Hyp Ref Expression
1 inundif ABAB=A
2 1 fveq2i volABAB=volA
3 inmbl AdomvolBdomvolABdomvol
4 3 adantr AdomvolBdomvolvolAvolBABdomvol
5 difmbl AdomvolBdomvolABdomvol
6 5 adantr AdomvolBdomvolvolAvolBABdomvol
7 indifcom ABAB=AABB
8 difin0 ABB=
9 8 ineq2i AABB=A
10 in0 A=
11 9 10 eqtri AABB=
12 7 11 eqtri ABAB=
13 12 a1i AdomvolBdomvolvolAvolBABAB=
14 mblvol ABdomvolvolAB=vol*AB
15 4 14 syl AdomvolBdomvolvolAvolBvolAB=vol*AB
16 inss1 ABA
17 16 a1i AdomvolBdomvolvolAvolBABA
18 mblss AdomvolA
19 18 ad2antrr AdomvolBdomvolvolAvolBA
20 mblvol AdomvolvolA=vol*A
21 20 ad2antrr AdomvolBdomvolvolAvolBvolA=vol*A
22 simprl AdomvolBdomvolvolAvolBvolA
23 21 22 eqeltrrd AdomvolBdomvolvolAvolBvol*A
24 ovolsscl ABAAvol*Avol*AB
25 17 19 23 24 syl3anc AdomvolBdomvolvolAvolBvol*AB
26 15 25 eqeltrd AdomvolBdomvolvolAvolBvolAB
27 mblvol ABdomvolvolAB=vol*AB
28 6 27 syl AdomvolBdomvolvolAvolBvolAB=vol*AB
29 difssd AdomvolBdomvolvolAvolBABA
30 ovolsscl ABAAvol*Avol*AB
31 29 19 23 30 syl3anc AdomvolBdomvolvolAvolBvol*AB
32 28 31 eqeltrd AdomvolBdomvolvolAvolBvolAB
33 volun ABdomvolABdomvolABAB=volABvolABvolABAB=volAB+volAB
34 4 6 13 26 32 33 syl32anc AdomvolBdomvolvolAvolBvolABAB=volAB+volAB
35 2 34 eqtr3id AdomvolBdomvolvolAvolBvolA=volAB+volAB
36 35 oveq1d AdomvolBdomvolvolAvolBvolA+volB=volAB+volAB+volB
37 26 recnd AdomvolBdomvolvolAvolBvolAB
38 32 recnd AdomvolBdomvolvolAvolBvolAB
39 simprr AdomvolBdomvolvolAvolBvolB
40 39 recnd AdomvolBdomvolvolAvolBvolB
41 37 38 40 addassd AdomvolBdomvolvolAvolBvolAB+volAB+volB=volAB+volAB+volB
42 simplr AdomvolBdomvolvolAvolBBdomvol
43 disjdifr ABB=
44 43 a1i AdomvolBdomvolvolAvolBABB=
45 volun ABdomvolBdomvolABB=volABvolBvolABB=volAB+volB
46 6 42 44 32 39 45 syl32anc AdomvolBdomvolvolAvolBvolABB=volAB+volB
47 undif1 ABB=AB
48 47 fveq2i volABB=volAB
49 46 48 eqtr3di AdomvolBdomvolvolAvolBvolAB+volB=volAB
50 49 oveq2d AdomvolBdomvolvolAvolBvolAB+volAB+volB=volAB+volAB
51 36 41 50 3eqtrd AdomvolBdomvolvolAvolBvolA+volB=volAB+volAB