Metamath Proof Explorer


Theorem volun

Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion volun AdomvolBdomvolAB=volAvolBvolAB=volA+volB

Proof

Step Hyp Ref Expression
1 simpl1 AdomvolBdomvolAB=vol*Avol*BAdomvol
2 mblss AdomvolA
3 1 2 syl AdomvolBdomvolAB=vol*Avol*BA
4 simpl2 AdomvolBdomvolAB=vol*Avol*BBdomvol
5 mblss BdomvolB
6 4 5 syl AdomvolBdomvolAB=vol*Avol*BB
7 3 6 unssd AdomvolBdomvolAB=vol*Avol*BAB
8 readdcl vol*Avol*Bvol*A+vol*B
9 8 adantl AdomvolBdomvolAB=vol*Avol*Bvol*A+vol*B
10 simprl AdomvolBdomvolAB=vol*Avol*Bvol*A
11 simprr AdomvolBdomvolAB=vol*Avol*Bvol*B
12 ovolun Avol*ABvol*Bvol*ABvol*A+vol*B
13 3 10 6 11 12 syl22anc AdomvolBdomvolAB=vol*Avol*Bvol*ABvol*A+vol*B
14 ovollecl ABvol*A+vol*Bvol*ABvol*A+vol*Bvol*AB
15 7 9 13 14 syl3anc AdomvolBdomvolAB=vol*Avol*Bvol*AB
16 mblsplit AdomvolABvol*ABvol*AB=vol*ABA+vol*ABA
17 1 7 15 16 syl3anc AdomvolBdomvolAB=vol*Avol*Bvol*AB=vol*ABA+vol*ABA
18 simpl3 AdomvolBdomvolAB=vol*Avol*BAB=
19 indir ABA=AABA
20 inidm AA=A
21 incom BA=AB
22 20 21 uneq12i AABA=AAB
23 unabs AAB=A
24 22 23 eqtri AABA=A
25 19 24 eqtri ABA=A
26 25 a1i AB=ABA=A
27 26 fveq2d AB=vol*ABA=vol*A
28 uncom AB=BA
29 28 difeq1i ABA=BAA
30 difun2 BAA=BA
31 29 30 eqtri ABA=BA
32 21 eqeq1i BA=AB=
33 disj3 BA=B=BA
34 32 33 sylbb1 AB=B=BA
35 31 34 eqtr4id AB=ABA=B
36 35 fveq2d AB=vol*ABA=vol*B
37 27 36 oveq12d AB=vol*ABA+vol*ABA=vol*A+vol*B
38 18 37 syl AdomvolBdomvolAB=vol*Avol*Bvol*ABA+vol*ABA=vol*A+vol*B
39 17 38 eqtrd AdomvolBdomvolAB=vol*Avol*Bvol*AB=vol*A+vol*B
40 39 ex AdomvolBdomvolAB=vol*Avol*Bvol*AB=vol*A+vol*B
41 mblvol AdomvolvolA=vol*A
42 41 eleq1d AdomvolvolAvol*A
43 mblvol BdomvolvolB=vol*B
44 43 eleq1d BdomvolvolBvol*B
45 42 44 bi2anan9 AdomvolBdomvolvolAvolBvol*Avol*B
46 45 3adant3 AdomvolBdomvolAB=volAvolBvol*Avol*B
47 unmbl AdomvolBdomvolABdomvol
48 mblvol ABdomvolvolAB=vol*AB
49 47 48 syl AdomvolBdomvolvolAB=vol*AB
50 41 43 oveqan12d AdomvolBdomvolvolA+volB=vol*A+vol*B
51 49 50 eqeq12d AdomvolBdomvolvolAB=volA+volBvol*AB=vol*A+vol*B
52 51 3adant3 AdomvolBdomvolAB=volAB=volA+volBvol*AB=vol*A+vol*B
53 40 46 52 3imtr4d AdomvolBdomvolAB=volAvolBvolAB=volA+volB
54 53 imp AdomvolBdomvolAB=volAvolBvolAB=volA+volB