Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | volun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | mblss | |
|
3 | 1 2 | syl | |
4 | simpl2 | |
|
5 | mblss | |
|
6 | 4 5 | syl | |
7 | 3 6 | unssd | |
8 | readdcl | |
|
9 | 8 | adantl | |
10 | simprl | |
|
11 | simprr | |
|
12 | ovolun | |
|
13 | 3 10 6 11 12 | syl22anc | |
14 | ovollecl | |
|
15 | 7 9 13 14 | syl3anc | |
16 | mblsplit | |
|
17 | 1 7 15 16 | syl3anc | |
18 | simpl3 | |
|
19 | indir | |
|
20 | inidm | |
|
21 | incom | |
|
22 | 20 21 | uneq12i | |
23 | unabs | |
|
24 | 22 23 | eqtri | |
25 | 19 24 | eqtri | |
26 | 25 | a1i | |
27 | 26 | fveq2d | |
28 | uncom | |
|
29 | 28 | difeq1i | |
30 | difun2 | |
|
31 | 29 30 | eqtri | |
32 | 21 | eqeq1i | |
33 | disj3 | |
|
34 | 32 33 | sylbb1 | |
35 | 31 34 | eqtr4id | |
36 | 35 | fveq2d | |
37 | 27 36 | oveq12d | |
38 | 18 37 | syl | |
39 | 17 38 | eqtrd | |
40 | 39 | ex | |
41 | mblvol | |
|
42 | 41 | eleq1d | |
43 | mblvol | |
|
44 | 43 | eleq1d | |
45 | 42 44 | bi2anan9 | |
46 | 45 | 3adant3 | |
47 | unmbl | |
|
48 | mblvol | |
|
49 | 47 48 | syl | |
50 | 41 43 | oveqan12d | |
51 | 49 50 | eqeq12d | |
52 | 51 | 3adant3 | |
53 | 40 46 52 | 3imtr4d | |
54 | 53 | imp | |