| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgfval.v |  | 
						
							| 2 |  | vtxdgfval.i |  | 
						
							| 3 |  | vtxdgfval.a |  | 
						
							| 4 |  | df-vtxdg |  | 
						
							| 5 |  | fvex |  | 
						
							| 6 |  | fvex |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | dmeq |  | 
						
							| 9 |  | fveq1 |  | 
						
							| 10 | 9 | eleq2d |  | 
						
							| 11 | 8 10 | rabeqbidv |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 | 9 | eqeq1d |  | 
						
							| 14 | 8 13 | rabeqbidv |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 12 15 | oveq12d |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 7 17 | mpteq12dv |  | 
						
							| 19 | 5 6 18 | csbie2 |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 | 20 1 | eqtr4di |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 22 | dmeqd |  | 
						
							| 24 | 2 | dmeqi |  | 
						
							| 25 | 3 24 | eqtri |  | 
						
							| 26 | 23 25 | eqtr4di |  | 
						
							| 27 | 22 2 | eqtr4di |  | 
						
							| 28 | 27 | fveq1d |  | 
						
							| 29 | 28 | eleq2d |  | 
						
							| 30 | 26 29 | rabeqbidv |  | 
						
							| 31 | 30 | fveq2d |  | 
						
							| 32 | 28 | eqeq1d |  | 
						
							| 33 | 26 32 | rabeqbidv |  | 
						
							| 34 | 33 | fveq2d |  | 
						
							| 35 | 31 34 | oveq12d |  | 
						
							| 36 | 21 35 | mpteq12dv |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 19 37 | eqtrid |  | 
						
							| 39 |  | elex |  | 
						
							| 40 | 1 | fvexi |  | 
						
							| 41 |  | mptexg |  | 
						
							| 42 | 40 41 | mp1i |  | 
						
							| 43 | 4 38 39 42 | fvmptd2 |  |