Metamath Proof Explorer


Theorem wfrlem10

Description: Lemma for well-founded recursion. When z is an R minimal element of ( A \ dom F ) , then its predecessor class is equal to dom F . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem10.1 R We A
wfrlem10.2 F = wrecs R A G
Assertion wfrlem10 z A dom F Pred R A dom F z = Pred R A z = dom F

Proof

Step Hyp Ref Expression
1 wfrlem10.1 R We A
2 wfrlem10.2 F = wrecs R A G
3 2 wfrlem8 Pred R A dom F z = Pred R A z = Pred R dom F z
4 3 biimpi Pred R A dom F z = Pred R A z = Pred R dom F z
5 predss Pred R dom F z dom F
6 5 a1i z A dom F Pred R dom F z dom F
7 simpr z A dom F w dom F w dom F
8 eldifn z A dom F ¬ z dom F
9 eleq1w w = z w dom F z dom F
10 9 notbid w = z ¬ w dom F ¬ z dom F
11 8 10 syl5ibrcom z A dom F w = z ¬ w dom F
12 11 con2d z A dom F w dom F ¬ w = z
13 12 imp z A dom F w dom F ¬ w = z
14 ssel Pred R A w dom F z Pred R A w z dom F
15 14 con3d Pred R A w dom F ¬ z dom F ¬ z Pred R A w
16 8 15 syl5com z A dom F Pred R A w dom F ¬ z Pred R A w
17 2 wfrdmcl w dom F Pred R A w dom F
18 16 17 impel z A dom F w dom F ¬ z Pred R A w
19 eldifi z A dom F z A
20 elpredg w dom F z A z Pred R A w z R w
21 20 ancoms z A w dom F z Pred R A w z R w
22 19 21 sylan z A dom F w dom F z Pred R A w z R w
23 18 22 mtbid z A dom F w dom F ¬ z R w
24 2 wfrdmss dom F A
25 24 sseli w dom F w A
26 weso R We A R Or A
27 1 26 ax-mp R Or A
28 solin R Or A w A z A w R z w = z z R w
29 27 28 mpan w A z A w R z w = z z R w
30 25 19 29 syl2anr z A dom F w dom F w R z w = z z R w
31 13 23 30 ecase23d z A dom F w dom F w R z
32 vex w V
33 32 elpred z V w Pred R dom F z w dom F w R z
34 33 elv w Pred R dom F z w dom F w R z
35 7 31 34 sylanbrc z A dom F w dom F w Pred R dom F z
36 6 35 eqelssd z A dom F Pred R dom F z = dom F
37 4 36 sylan9eqr z A dom F Pred R A dom F z = Pred R A z = dom F